什么是电火花加工.docx

上传人:b****4 文档编号:4792464 上传时间:2022-12-09 格式:DOCX 页数:11 大小:26.26KB
下载 相关 举报
什么是电火花加工.docx_第1页
第1页 / 共11页
什么是电火花加工.docx_第2页
第2页 / 共11页
什么是电火花加工.docx_第3页
第3页 / 共11页
什么是电火花加工.docx_第4页
第4页 / 共11页
什么是电火花加工.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

什么是电火花加工.docx

《什么是电火花加工.docx》由会员分享,可在线阅读,更多相关《什么是电火花加工.docx(11页珍藏版)》请在冰豆网上搜索。

什么是电火花加工.docx

什么是电火花加工

 

一、什么是电火花加工

电火花是一种自激放电,其特点如下:

10-

火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。

伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。

火花通道必须在维持暂短的时间(通常为7-10-3S)后及时熄灭,才可保持火花放电的冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。

通道能量的作用,可使电极局部被腐蚀。

利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。

电火花加工是在较低的电压范围内,在液体介质中的火花放电。

二、电火花加工的特点

电火花加工是与机械加工完全不同的一种新工艺。

随着工业生产的发展和科学技术的进步,具有高熔点、高硬度、高强度、高脆性,高粘性和高纯度等性能的新材料不断出现。

具有各种复杂结构与特殊工艺要求的工件越来越多,这就使得传统的机械加工方法不能加工或难于加工。

因此,人们除了进一步发展和完善机械加工法之外,还努力寻求新的加工方法。

电火花加工法能够适应生产发展的需要,并在应用中显示出很多优异性能,因此,得到了迅速发展和日益广泛的应用。

电火花加工的特点如下:

1.脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。

不受材料硬度影响,不受热处理状况影响。

2.脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围小。

3.加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。

工具电极材料不需比工件材料硬,因此,工具电极制造容易。

4.可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。

基于上述特点,电火花加工的主要用途有以下几项:

1)制造冲模、塑料模、锻模和压铸模。

2)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。

3)在金属板材上切割出零件。

4)加工窄缝。

5)磨削平面和圆面。

6)其它(如强化金属表面,取出折断的工具,在淬火件上穿孔,直接加工型面复杂的零件等)。

三、电火花加工机床的组成及作用

从上面所谈的情况可以看到,要实现电火花加工过程,机床必须具备三个要素,即:

脉冲电源,机械部分和自动控制系统,工作液过滤与循环系统。

下面对这三要素的作用逐一加以简单讨论。

1.脉冲电源加在放电间隙上的电压必须是脉冲的,否则,放电将成为连续的电弧。

所谓脉冲电源,实际就是一种电气线路或装置,它们能发出具有足够能量的脉冲电压来。

2.机械部分和自动控制系统

其作用是维持工具电极和工件之间有一适当的放电间隙,并在线调整。

3.工作液净化与循环系统

工作液的作用是使能量集中,强化加工过程,带走放电时所产生的热量和电蚀产物。

工作液系统包括工作液的储存冷却、循环及其调节与保护、过滤以及利用工作液强迫循环系统。

上述三要素,有时也称为电火花加工机床的三大件,它们组成了电火花加工机床这一统一体,以满足加工工艺的要求。

四、实现电火花加工的条件

实现电火花加工,应具备如下条件:

1.工具电极和工件电极之间必须维持合理的距离。

在该距离范围内,既可以满足脉冲电压不断击穿介质,产生火花放电,又可以适应在火花通道熄灭后介质消电离以及排出蚀除产物的要求。

若两电极距离过大,则脉冲电压不能击穿介质、不能产生火花放电,若两电极短路,则在两电极间没有脉冲能量消耗,也不可能实现电腐蚀加工。

2.两电极之间必须充入介质。

在进行材料电火花尺寸加工时,两极间为液体介质(专用工作液或工业煤油);在进行材料电火花表面强化时,两极间为气体介质。

3.输送到两电极间的脉冲能量密度应足够大。

在火花通道形成后,脉冲电压变化不大,因此,通道的电流密度可以表征通道的能量密度。

能量密度足够大,才可以使被加工材料局部熔化或汽化,从而在被加工材料表面形成一个腐蚀痕(凹坑),实现电火花加工。

因而,通道一般必须有105-106A/cm2电流密度。

放电通道必须具有足够大的峰值电流,通道才可以在脉冲期间得到维持。

一般情况下,维持通道的峰值电流不小于2A。

4•放电必须是短时间的脉冲放电。

放电持续时间一般为10-7-10-3&由于放

电时间短,使放电时产生的热能来不及在被加工材料内部扩散,从而把能量作用局限在很小范围内,保持火花放电的冷极特性。

5.脉冲放电需重复多次进行,并且多次脉冲放电在时间上和空间上是分散

这里包含两个方面的意义:

其一时间上相邻的两个脉冲不在同一点上形成通道;其二,若在一定时间范围内脉冲放电集中发生在某一区域,则在另一段时间内,脉冲放电应转移到另一区域。

只有如此,才能避免积炭现象,进而避免发生电弧和局部烧伤。

6.脉冲放电后的电蚀产物能及时排放至放电间隙之外,使重复性放电顺利进行。

在电火花加工的生产实际中,上述过程通过两个途径完成。

一方面,火花放电以及电腐蚀过程本身具备将蚀除产物排离的固有特性;蚀除物以外的其余放电产物(如介质的汽化物)亦可以促进上述过程;另一方面,还必须利用一些人为的辅助工艺措施,例如工作液的循环过滤,加工中采用的冲、抽油措施等等。

五、极性效应

电火花加工时,相同材料两电极的被腐蚀量是不同的。

其中一个电极比另一个电极的蚀除量大,这种现象叫做极性效应。

如果两电极材料不同,则极性效应更加明显。

六、覆盖效应

在油类介质中放电加工会分解出负极性的游离碳微粒,在合适的脉宽、脉间条件下将在放电的正极上覆盖碳微粒,叫覆盖效应。

利用覆盖效应

可以降低电极损耗。

注意负极性加工才有利做覆盖效应。

七、加工速度

对于电火花成形机来说加工速度是指在单位时间内,工件被蚀除的体积或重量。

一般用体积表示。

若在时间T内,工件被蚀除的体积为V,则加

工速度Vw为:

Vw=V/t(mm3/min)对于线切割机来说,加工速度是指在单位时间内,工

件被切面积。

即用mm2/min来表示。

在规定表面粗糙度(如Ra=

2.5gm),相对电极损耗(如1%)时的最大加工速度,是衡量电加工机床工艺性能的重要指标。

一般情况下,生产厂

给出的是最大加工电流,在最佳加工状态下所能达到的最高加工速度。

因此,在实际加工时,由于被加工件尺寸与形状的千变万化,加工条件,排屑条件等与理想状态相差甚远,即使在粗加工时,加工速度也往往大大低于机床的最大加工速度指标。

八、工具电极损耗

在电火花成形加工中,工具电极损耗直接影响仿形精度,特别对于型腔加工,电极损耗这一工艺指标较加工速度更为重要。

电极损耗分为绝对损耗和相对损耗。

绝对损耗最常用的是体积损耗Ve和长度损耗Veh二种方式,它们分别表示在单位时间内,工具电极被蚀除的体积和长度。

Ve=V/t(mm3/min)

Veh=H/t(mm/min)

相对损耗——工具电极绝对损耗与工件加工速度的百分比。

通常采用长度相对损耗比较直观,测量也比较方便。

在线切割加工中,电极丝的损耗对工件质量的影响不大,故一般不加以讨论。

但快走丝机床使用钼作为电极丝,是重复放电,所以丝的损耗影响到电极丝的使用寿命,在实际加工中应予适当考虑。

在电火花成形加工中,工具电极的不同部位,其损耗速度也不相同。

在精加工时,一般电规准选取较小,放电间隙太小,通道太窄,蚀除物在爆炸与工作液作用下,对电极表面不断撞击,加速了电极损耗,因此,如能适当增大电间隙,改善通道状况,即可降低电极损耗。

九、表面粗糙度

表面粗糙度是指加工表面上的微观几何形状误差。

对电加工表面来讲,即是加工表面放电痕——坑穴的聚集,由于坑穴表面会形成一个加工硬化层,而且能存润滑油,其耐磨性比同样粗糙度的机加表面要好,所以加工表面允许比要求的粗糙度大些。

而且在相同粗糙度的情况下,电加工表面比机加工表面亮度低。

国家标准规定:

加工表面粗糙度用Ra(轮廓的平均算术偏差)和Rz(不平度平均高度)之一来评定。

工件的电火花加工表面粗糙度直接影响其使用性能,如耐磨性,配合性质,接触刚度,疲劳强度和抗腐蚀性等。

尤其对于高速高洁,高压条件下工作的模具和零件,其表面粗糙度往往是决定其使用性能和使用寿命的关键。

十、放电间隙

放电间隙,亦称过切量,加工中是指脉冲放电两极间距,实际效果反映在加工后工件尺寸的单边扩大量。

对电火花成形加工放电间隙的定量认识是确定加工方案的基础。

其中包括工具电极形状,尺寸设计,加工工艺步骤设计,加工规准的切换以及相应工艺措施的设计。

十一、两电极蚀除量之间的矛盾

本篇中,已经明确阐述了脉冲放电时间越长,越有利于降低工具电极相对损耗。

在电火花加工的实用过程中,粗加工采用长脉冲时间和高放电电流,既体现了速度高,又体现了损耗小,反映了加工速度和工具电极损耗这一矛盾的缓解。

但是,在精加工时,矛盾激化了。

为了实现小能量加工,必须大大压缩脉冲放电时间。

为达到脉冲放电电流与脉冲放电时间参数组合合理,亦必须大大

压缩脉冲放电电流。

这样,不仅加大了工具电极相对损耗,又大幅度降低了加工速度。

十二、加工速度与加工表面粗糙度之间的矛盾

为了解决电火花加工工艺的这一基本矛盾,人们试图将一个脉冲能量分散为若干个通道同时在多点放电。

用这种方法既改善了加工表面粗糙度,又维持了原有的加工速度。

到目前为止,实现人为控制的多点同时放电的有效方法只有一种,即分离工具电极多回路加工。

为了实现整体电极的多通道加工,人们设想了各种方法,并进行了多年的实验摸索。

但是迄今为止,尚没有彻底解决。

在实用过程中,型腔模具的加工采用粗、中、精逐档过渡式加工方法。

加工速度的矛盾是通过大功率、低损耗的粗加工规准解决的;而中、精加工虽然工具电极相对损耗大,但在一般情况下,中、精加工余量仅占全部加工量的极小部分,故工具电极的绝对损耗极小,可以通过加工尺寸控制进行补偿,或在不影响精度要求时予以忽略。

十三、电火花加工常用名词、术语及符号

1、放电间隙:

放电间隙指加工时工具和工件之间产生火花放电的一层距离间隙。

在加工过程中,则称为加工间隙S,它的大小一般在

0.01

0.5mm之间,粗加工时间隙较大,精加工时则较小。

加工间隙又可分为端面间隙SF和侧面间隙SL

2、脉冲宽度ti(⑹:

脉冲宽度简称脉宽,它是加到工具和工件上放电间隙两端的电压脉冲的持续时间,为了防止电弧烧伤,电火花加工只能用断断续续的脉冲电压波。

粗加工可用较大的脉宽ti>100®,精加工时只能用较少的脉宽ti<50宙。

3、脉冲间隔to(宙):

脉冲间隔简称脉间或间隔,也称脉冲停歇时间。

它是两个电压脉冲之间的间隔时间。

间隔时间过短,放电间隙来不及消电离和恢复绝缘,容易产生电弧放电,烧伤工具和工件;脉间选得过长,将降低加工生产率。

加工面积、加工深度较大时,脉间也应稍大。

?

4、开路电压或峰值电压:

开路电压是间隙开路时电极间的最高电压,等于电源的直流电压。

峰值电压高时,放电间隙大,生产率高,但成型复制精度稍差。

5、火花维持电压:

火花维持电压是每次火花击穿后,在放电间隙上火花放电时的维持电压,一般在25V左右,但它实际是一个高频振荡的电压。

电弧的维持电压比火花的维持电压低5V左右,高频振荡频率很低,一般示波器上观察不到高频成分,观察到的是一水平亮线。

过渡电弧的维持电压则介于火花和电弧之间。

6、加工电压或间隙平均电压U(V)

加工电压或间隙平均电压是指加工时电压表上指示的放电间隙两端的平均电压,它是多个开路电压、火花放电维持电压、短路和脉冲间隔等零电压的平均值。

在正常加工时,加工电压在30-50V,它与占空比、预置进给量等有关。

占空比大、欠进给、欠跟踪、间隙偏开路,则加工电压偏大;占空比小、过跟踪或预置进给量小(间隙偏短路),加工电压即偏小。

7、加工电流I(A)

加工电流是加工时电流表上指示的流过放电间隙的平均电流。

精加工时小,粗加工时大;间隙偏开路时小,间隙合理或偏短路时则大。

8、短路电流IS(A)

短路电流是放电间隙短路时(或人为短路时)电流表上指示的平均电流(因为短路时还有停歇时间内无电流)。

它比正常加工时的平均电流要大20-40%。

9、峰值电流IS(A)峰值电流是间隙火花放电时脉冲电流的最大值(瞬时),日本、英国、美国常用IS表示,虽然峰值电流不易直接测量,但它是实际影响生产率、表面粗糙度等指标的重要参数。

在设计制造脉冲电源时,每一功率放大管串联限流电阻后的峰值电流是预先选择计算好的。

为了安全,每个50W的大功率晶体管选定的峰值电流约为2-3A,电源说明书中也有说明,可以按此选定粗、中、精加工时的峰值电流(实际上是选定用几个功率管进行加工)。

10、放电状态

放电状态指电火花加工时放电间隙内每一脉冲放电时的基本状态。

一般分为五种放电状态和脉冲类型:

第一、开路(空载脉冲)

放电间隙没有击穿,间隙上有大于50V的电压,但间隙内没有电流流过,为空载状态(td=ti)。

第二、火花放电(工作脉冲,或称有效脉冲)间隙内绝缘性能良好,工作液介质击穿后能有效地抛出、蚀除金属。

波形特点是:

电压上有td,te和Ie波形上有高频振荡的小锯齿波形。

第三、短路(短路脉冲)

放电间隙直接短路相接,这是由于伺服进给系统瞬时进给过多或放电间隙中有电蚀产物搭接所致。

间隙短路时电流较大,但间隙两端的电压很小,没有蚀除加工作用。

第四、电弧放电(稳定电弧放电)

由于排屑不良,放电点集中在某一局部而不分散,局部热量积累,温度升高,恶性循环,此时火花放电就成为电弧放电,由于放电点固定在某一点或某局部,因此称为稳定电弧,常使电极表面结炭、烧伤。

波形特点是td和高频振荡的小锯齿波基本消失。

第五、过渡电弧放电(不稳定电弧放电,或称不稳定火花放电)

过渡电弧放电是正常火花放电与稳定电弧放电的过渡状态,是稳定电弧放电的前兆。

波形特点是击穿延时td很小或接近于零,仅成为一尖刺,电压电流波上的高频分量变低成为稀疏和锯齿形。

早期检测出过渡电弧放电,对防止电弧烧伤有很大意义。

以上各种放电状态在实际加工中是交替、概率性地出现的(与加工规准和进给量、冲油、间隙污染等有关),甚至在一次单脉冲放电过程中,也可能交替出现两种以上的放电状态。

11、加工速度vw或VW(mm3/min),vm或Vm(g/min)

加工速度是单位时间(min)内从工件上蚀除加工下来的金属体积

(mm3),以质量(g)计算时用vm或Vm表示,也称加工生产率。

大功率电源粗加工时vW>500mm3/min,但电火花精加工时,通常vw<20mm3/min。

12、相对损耗或损耗比(损耗率)0(%)

相对损耗或损耗比是工具电极损耗速度和工件加工速度之比值,并以此来综合合衡量工具电极的耐损耗程度和加工性能。

13、面积效应:

面积效应指电火花加工时,随加工面积大小变化而加工速度、电极损耗比和加工稳定性等指标随之变化的现象。

一般加工面积过大或过小时,工艺指标通常降低,这是由“电电流密度”过小或过大引起的。

14、xx效应:

随着加工深度增加而加工速度和稳定性降低的现象称深度效应。

主要是电蚀产物积聚、排屑不良所引起的

线切割是冲模零件的主要加工方式,然而进行合理的工艺分析,正确计算

数控编程中电极丝的设计走丝轨迹,关系到模具的加工精度。

通过穿丝孔的确定与切割路线的优化,改善切割工艺,这对于提高切割质量和生产效率,是一条行之有效的重要途径。

2实际轨迹的计算

根据大量的统计数据表明,线切割加工后的实际尺寸大部分处于公差带的中位值(或称“中间尺寸”附)近,因此对于冲模零件图样中标注公差的尺寸,应采用中位值尺寸作为实际切割轨迹的编程数据,其计算公式为:

中位值尺寸=基本尺寸+(上偏差+下偏差)。

例如:

图样尺寸外圆半径R25-

0.04,其中位值尺寸为

25+(0-

0.04)/2=

24.98(mm)。

由于线切割放电加工的特点,工件与电极丝之间始终存在放电间隙。

因此,切割加工时,工件的理论轮廓(图样)与电极丝的实际轨迹应保持一定的距离,即电极丝中心轨迹与工件轮廓的垂直距离,称为偏移量fO(或称为补偿值)。

fO=R丝+3电

式中R丝——电极丝半径

3电——单边放电间隙

线切割加工冲模的凸、凹模,应综合考虑电极丝半径R丝、单边放电间隙

3电以及凸、凹模之间的单边配合间隙3配,以确定合理的间隙补偿值fO。

例如:

加工冲孔模(即要求保证工件的冲孔尺寸),以冲孔的凸模为基准,故凸模的间隙补偿值为:

f凸=R丝+3电,凹模尺寸应增加3配。

而加工落料模(即要求保证冲下的工件尺寸),以落料的凹模为基准,凹模的间隙补偿值f凸=R丝+3电,凸模的尺寸应增加3配。

见图1。

偏移量的大小将直接影响线切割的加工精度和表面质量。

若偏移量过大,则间隙太大,放电不稳定,影响尺寸精度;偏移量过小,则间隙太小,会影响修切余量。

修切加工时的电参数将依次减弱,非电参数也应作相应调整,以提高加工质量。

图1凸模与凹模的间隙补偿值

(a)凸模(b)凹模

根据实践经验,线切割加工冲裁模具的配合间隙应比国际上所流行的“大”间隙冲模(《手册》推荐值)应小些。

因为凸、凹模线切割加工中,工件表面会形成一层组织脆松的熔化层,电参数越大,表面粗糙度越差,熔化层较厚。

且随着模具冲裁次数的增加,这层脆松的表层会逐渐磨损,使模具的配合间隙逐渐增大,满足“大”间隙的要求。

3穿丝孔的确定

穿丝孔的位置对于加工精度及切割速度关系甚大。

通常,穿丝孔的位置最好选在已知轨迹尺寸的交点处或便于计算的坐标点上,以简化编程中有关坐标尺寸的计算,减少误差。

当切割带有封闭型孔的凹模工件时,穿丝孔应设在型孔的中心,这样既可准确地加工穿丝孔,又较方便地控制坐标轨迹的计算,但无用的切入行程较长。

对于大的型孔切割,穿丝孔可设在*近加工轨迹的边角处,以缩短无用行程。

在切割凸模外形时,应将穿丝孔选在型面外,最好设在*近切割起始点处。

切割窄槽时,穿丝孔应设在图形的最宽处,不允许穿丝孔与切割轨迹发生相交现象。

此外,在同一块坯件上切割出两个以上工件时,应设置各自独立的穿丝孔,不可仅设一个穿丝孔一次切割出所有工件。

切割大型凸模时,有条件者可沿加工轨迹设置数个穿丝孔,以便切割中发生断丝时能够就近重新穿丝,继续切割。

穿丝孔的直径大小应适宜,一般为①2mm~©8mm。

若孔径过小,既增加钻孔难度又不方便穿丝;若孔径太大,则会增加钳工工作量。

如果要求切割的型孔数较多,孔径太小,排布较为密集,应采用较小的穿丝孔(①

0.3mm~①

0.5mm),以避免各穿丝孔相互打通或发生干涉现象。

4切割路线的优化

切割路线的合理与否将关系到工件变形的大小。

因此,优化切割路线有利于提高切割质量和缩短加工时间。

切割路线的安排应有利于工件在加工过程中始终与装夹支撑架保持在同一坐标系内,避免应力变形的影响,并遵循以下原则。

(1)一般情况下,最好将切割起始点安排在*近夹持端,将工件与其夹持部分分离的切割段安排在切割路线的末端,将暂停点设在*近坯件夹持端部位。

(2)切割路线的起始点应选择在工件表面较为平坦、对工作性能影响较小的部位。

对于精度要求较高的工件,最好将切割起始点取在坯件上预制的穿丝孔中,不可从坯件外部直接切入,以免引起工件切开处发生变形。

(3)为减小工件变形,切割路线与坯件外形应保持一定的距离,一般不小于5mm。

线切割加工中对于一些具体工艺要求,应重点关注切割路线的优化。

(1)二次(或多次)切割法对于一些形状复杂、壁厚或截面变化大的凹模型腔零件,为减小变形,保证加工精度,宜采用二次切割法。

通常,精度要求高的部位留2mm〜3mm余量先进行粗切割,待工件释放较多变形后,再进行精切割至要求尺寸。

若为了进一步提高切割精度,在精切割之前,留

0.20mm~

0.30mm余量进行半精切割,即为3次切割法,第1次为粗切割,第2次为半精切割,第3次为精切割。

这是提高模具线切割加工精度的有效方法。

(2)尖角切割法当要求工件切割成“尖角”或(称“清角”时),可采用方法一,在原路线上增加一小段超切路程,如图2所示的A0-A1段,使电极丝切割的最大滞后点达到程序A0点,然后再前进到附加点A1,并返回至A0点,接着再执行原程序,便可切割出尖角。

也可采用图3所示的方法二的切割路线,在尖角处增加一段过切的小正方形或小三角形路线作为附加程序,这样便可保证切割出棱边清晰的尖角。

图2尖角切割方法

图3尖角切割方法二

(3)拐角的割法线切割放电加工过程中,由于放电的反作用力造成电极丝的实际位置比机床X、Y坐标轴移动位置滞后,从而造成拐角精度较差。

电极丝的滞后移动则会造成工件的外圆弧加工过亏,而内圆弧加工不足,致使工件拐角处精度下降。

为此,对于工件精度要求高的拐角处,应自动调慢

X、丫轴的驱动速度,使电极丝的实际移动速度与X、Y轴同步。

也就是,加工精度要求越高,拐角处的驱动速度应越慢。

(4)小圆角切割法若发现图样要求的内圆角半径小于切割时的偏移量,将会造成圆角处“根切”现象。

为此,应明确图样轮廓中最小圆角必须大于最后一遍修切的偏移量,否则应选择直径更细的电极丝。

在主切割加工及初修切割加工中,可根据各遍加工时不同的偏移量,设置不同的内圆角半径,即对于同段轮廓编制不同的内圆角半径子程序,子程序中的内圆角半径应大于此遍切割的偏移量,这样就可切割出很小的圆角,并获取较好的圆角切割质量。

5切割前工件的准备

为了减少切割过程中模具的变形及提高加工质量,切割前凸凹模零件应满足以下要求:

(1)工件上、下两平面的平行度误差应小于

0.05mm。

(2)工件应加工一对正交立面,作为定位、校验与测量基准。

(3)模具切割应采用封闭式切割,以降低切割温度,减小变形。

(4)切割工件的四周边料留量应为模具厚度的为宜,一般边缘留量不小于5mm。

(5)为减小模具变形,并正确选择加工方法和严格执行热处理规范,对于精度要求高的模具,最好进行两次回火处理。

(6)工件淬火前应将所有销孔、螺钉孔加工成形。

(7)模具热处理后,穿丝孔内应去除氧化皮与杂质,防止导电性能降低而引起断丝故障。

(8)线切割前,工件表面应去除氧化皮和锈迹,并进行消磁处理。

6结语

编程完成后、正式切割加工之前,应对编制的程序进行检查与验证,确定其正确性。

线切割机床的数控系统均提供程序验证的方法,常用的方法有:

画图检验法主要用于验证程序中是否存在错误语法及是否符合图样加工轮廓;空行程检验法可检验程序的实际加工情况,检查加工中是否存在碰撞或干涉现象,以及机床行程是否满足加工要求等;动态模拟加工检验法通过模拟动态加工实况,对程序及加工轨迹路线进行全面验证。

通常,可按编制的程序全部运行一遍,观察图形是否“回零”。

对于一些尺寸精度要求高、凸、凹模配合间隙小的冲模,可先用薄板料试切割,检查有关尺寸精度与配合间隙,如发现不符要求处,应及时修正程序,直至验证合格后,方可正式切割加工。

正式切割结束后,不可急于拆下工件,应检查起始与终结坐标点是否一致,如发现有问题,应及时采取“补救”措施。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职高对口

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1