基于单片机的步进电机控制系统设计.docx

上传人:b****6 文档编号:4685395 上传时间:2022-12-07 格式:DOCX 页数:40 大小:487.86KB
下载 相关 举报
基于单片机的步进电机控制系统设计.docx_第1页
第1页 / 共40页
基于单片机的步进电机控制系统设计.docx_第2页
第2页 / 共40页
基于单片机的步进电机控制系统设计.docx_第3页
第3页 / 共40页
基于单片机的步进电机控制系统设计.docx_第4页
第4页 / 共40页
基于单片机的步进电机控制系统设计.docx_第5页
第5页 / 共40页
点击查看更多>>
下载资源
资源描述

基于单片机的步进电机控制系统设计.docx

《基于单片机的步进电机控制系统设计.docx》由会员分享,可在线阅读,更多相关《基于单片机的步进电机控制系统设计.docx(40页珍藏版)》请在冰豆网上搜索。

基于单片机的步进电机控制系统设计.docx

基于单片机的步进电机控制系统设计

2013届

 分类号:

TM383.6

                 单位代码:

10452

 

毕业论文(设计)

基于单片机的步进电机控制系统设计

      

姓名          

      学号   

       年级    

       专业   电气工程及其自动化

       系 (院)  汽车学院

       指导教师 

 2013年4月26日

摘要

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

步进电机的调速一般是改变输入步进电机的脉冲的频率来实现步进电机的调速,因为步进电机每给一个脉冲就转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。

在本设计方案中采用AT89C51型单片机内部的定时器改变CP脉冲的频率从而实现对步进电机的转速进行控制,实现电机调速与正反转的功能。

关键词:

单片机;步进电机;调速系统

Abstract

Step-by-stepelectricmotoristheringopeninggatingelementchangingelectricitypulsesignalintoangulardisplacementorlinedisplacement.Underthesituationofmustoverload,theelectricmotorrotationrate,discontinuouslocationdependonpulsesignalfrequencyandpulsenumberonly,makefreefrombeingloadedwiththeeffectchanging,butbethatbeingaddedapulsesignal,theelectricmotorbyelectricmotoristohaverotatedastepspurangle.Thisgleamofthesexualrelationshipsexistence,addsstep-by-stepelectricmotorcharacteristicssuchasonlyhavingthecyclicityerrorbuttherebeingnoaccumulativeerror.Feasiblesimplicitycontrollingafieldusingstep-by-stepelectricmotortocometocontrolchangeableextraordinaryinspeed,locationetc.Step-by-stepelectricmotorspeedregulationgeneralbechangeimportstep-by-stepelectricmotorpulsefrequencycometruestep-by-stepelectricmotorspeedregulation,becauseofstep-by-stepelectricmotoreverybegiventoapulserightawayrotateonefixedangle,suchrightawaynotbadpassunderthecontrolofstep-by-stepelectricmotorapulsearriveatnextpulseperiodcometochangepulsefrequency,Cometocontrolthespeedregulation,realizingstep-by-stepelectricmotortherebytocometochangetheelectricmotorrotationratestep-by-stepangleconcretelythedeferredlength.FrequencyadopttheinternaltimerofAT89C51typemonolithicmachinetochangeCPpulseinthedesignplaninrealizesthespeedregulationcontrolling,realizinganelectricmotorandthefunctionthatthepositiveandnegativerotatesbeinginprogresstostep-by-stepelectricmotorrotationratethereby.

Keywords:

Step-by-stepelectricmotor;Monolithicmachine;Speedregulationsystem

 

目 录

1绪论

步进电机最早是在1920年由英国人所开发。

1950年后期晶体管的发明也逐渐应用在步进电机上,这对于数字化的控制变得更为容易。

以后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解性能、高响应性、信赖性等灵活控制性高的机械系统中。

在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。

步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。

步进电机是将电脉冲信号变换成角位移或直线位移的执行部件。

步进电机可以直接用数字信号驱动,使用非常方便。

一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入时步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。

步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。

在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。

因此非常适合于单片机控制。

步进电机还具有快速启动、精确步进和定位等特点,因而在数控机床,绘图仪,打印机以及光学仪器中得到广泛的应用。

步进电动机已成为除直流电动机和交流电动机以外的第三类电动机。

传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。

步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。

2步进电机概述

2.1步进电机的特点

1)一般步进电机的精度为步进角的3-5%,且不积累。

2)步进电机外表允许的温度高。

步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点:

一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

3)步进电机的力矩会随转速的升高而下降。

当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。

在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。

步进电机有一个技术参数:

空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。

在有负载的情况下,启动频率应更低。

如果要使电机高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频。

2.2步进电机的工作原理

步进电机是一种用电脉冲进行控制,将电脉冲信号转换成相位移的电机,其机械位移和转速分别与输入电机绕组的脉冲个数和脉冲频率成正比,每一个脉冲信号可使步进电机旋转一个固定的角度。

脉冲的数量决定了旋转的总角度,脉冲的频率决定了电机运转的速度。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

2.3步进电机的技术参数

2.3.1步进电机的静态指标术语:

1)相数:

产生不同对N、S磁场的激磁线圈对数。

常用m表示。

2)拍数:

完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A。

3)步距角:

对应一个脉冲信号,电机转子转过的角位移用θ表示。

θ=360度/(转子齿数*运行拍数),以常规二、四相,转子齿为50齿电机为例。

四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。

4)定位转矩:

电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

5)静转矩:

电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。

此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。

虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过分采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

2.3.2步进电机动态指标及术语:

1)步距角精度:

步进电机每转过一个步距角的实际值与理论值的误差。

用百分比表示:

误差/步距角*100%。

不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。

2)失步:

电机运转时运转的步数,不等于理论上的步数。

3)失调角:

转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。

4)最大空载起动频率:

电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5)最大空载的运行频率:

电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。

6)运行矩频特性:

电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。

电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。

7)电机的共振点:

步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。

8)电机正反转控制:

当电机绕组通电时序为A-AB-B-BC-C-CD-D-DA时为正转,通电时序为DA-D-CD-C-BC-B-AB-A时为反转。

2.4步进电机的分类

步进电机分为三大类:

1)反应式步进电机:

反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。

它的结构简单,成本距角可以做得很小,但动态性能较差。

反应式步进电机有单段式和多段式两种类型。

2)永磁式步进电机:

永磁式步进电机的转子是用永磁材料制成的,转子本身就是一个磁源。

转子的极数和定子的极数相同,所以一般步进角比较大,它输出转矩大,动态性能好,消耗功率小(相比反应式),但启动运行频率较低,还需要正负脉冲供电。

3)混合式步进电机:

混合式步进电机综合了反应式和永磁式两者的优点。

混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。

因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪声低、低频振动小。

这种电动机最初是作为一种低速驱动用的交流同步机设计的,后来发现如果各相绕组通以脉冲电流,这种电动机也能做步进增量运动。

由于能够开环运行以及控制系统比较简单,因此这种电机在工业领域中得到广泛应用。

2.5步进电机的内外结构

步进电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开如2.1图所示:

2.1定子展开图

电动机定子铁心和一般电机一样由硅钢片叠成,铁心内孔表面有开口槽。

转子装有一个轴向磁化永磁体用以产生一个单向磁场。

永磁体产生的磁通,在每一个气隙圆周上都是单方向通过气隙的,这时作用在气隙中的磁势是同极性的,称为单极磁势。

而转子包括两段,一段经永磁体磁化成N极,另一段磁化为S极,每段转子齿以一个齿距间隔均匀分布,但两段转子的齿相互错开1/2个转子齿距。

3步进电机常见的控制方案与驱动技术简介

3.1常见的步进电机控制方案

3.1.1基于电子电路的控制

步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。

由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。

步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。

此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。

这个系统由三部分组成:

脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。

系统组成如图3.1所示。

 

图3.1 基于电子电路控制系统

此种方案即可为开环控制,也可闭环控制。

开环时,其平稳性好,成本低,设计简单,但未能实现高精度细分。

采用闭环控制,即能实现高精度细分,实现无级调速。

闭环控制是不断直接或间接地检测转子的位置和速度,然后通过反馈和适当的处理,自动给出脉冲链,使步进电机每一步响应控制信号的命令,从而只要控制策略正确电机不可能轻易失步。

该方案多通过一些大规模集成电路来控制其脉冲输出频率和脉冲输出数,功能相对较单一,如需改变控制方案,必须需重新设计,因此灵活性不高。

3.1.2基于PLC的控制

PLC也叫可编程控制器,是一种工业上用的计算机。

PLC作为新一代的工业控制器,由于具有通用性好、实用性强、硬件配套齐全、编程简单易学和可靠性高等优点而广泛应用于各行业的自动控制系统中。

步进电机控制系统有PLC、环形分配器和功率驱动电路组成。

控制系统采用PLC来产生控制脉冲。

通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量,同时通过编程控制脉冲频率来控制步进电机的转动速度,进而控制伺服机构的进给速度。

环形脉冲分配器将PLC输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。

PLC控制的步进电机可以采用软件环形分配器,也可采用硬件环形分配器。

采用软件环形分配器占用PLC资源较多,特别是步进电机绕组相数大于4时,对于大型生产线应该予以考虑。

采用硬件环形分配器,虽然硬件结构稍微复杂些,但可以节省PLC资源,目前市场有多种专用芯片可以选用。

步进电机功率驱动电路将PLC输出的控制脉冲放大,达到比较大的驱动能力,来驱动步进电机。

采用软件来产生控制步进电机的环型脉冲信号,并用PLC中的定时器来产生速度脉冲信号,这样就可以省掉专用的步进电机驱动器,降低硬件成本。

但由于PLC的扫描周期一般为几毫秒到几十毫秒,相应的频率只能达到几百赫兹,因此,受到PLC工作方式的限制及其扫描周期的影响,步进电机不能在高频下工作,无法实现高速控制。

并且在速度较高时,由于受到扫描周期的影响,相应的控制精度就降低了。

3.1.3基于单片机的控制

采用单片机来控制步进电机,实现了软件与硬件相结合的控制方法。

用软件代替环形分配器,达到了对步进电机的最佳控制。

系统中采用单片机接口线直接去控制步进电机各相驱动线路。

由于单片机的强大功能,还可设计大量的外围电路,键盘作为一个外部中断源,设置了步进电机正转、反转、档次、停止等功能,采用中断和查询相结合的方法来调用中断服务程序,完成对步进电机的最佳控制,显示器及时显示正转、反转速度等状态。

环形分配器其功能由单片机系统实现,采用软件编程的办法实现脉冲的分配。

本方案有以下优点:

1)单片机软件编程可以使复杂的控制过程实现自动控制和精确控制,避免了失步、振荡等对控制精度的影响;2)用软件代替环形分配器,通过对单片机的设定,用同一种电路实现了多相步进电机的控制和驱动,大大提高了接口电路的灵活性和通用性;3)单片机的强大功能使显示电路、键盘电路、复位电路等外围电路有机的组合,大大提高系统的交互性。

基于以上优点,本次设计采用基于单片机的控制方案。

3.2步进电机驱动技术

步进电动机上个世纪就出现了,它的组成、工作原理和今天的反应式步进电动机没有什么本质区别,也是依靠气隙间的磁导变化来产生电磁转矩。

上世纪80年代以后,由于廉价的微型计算机以多功能的姿态出现,步进电动机的控制方式变得更加灵活多样。

步进电机驱动技术指的是用步进电机驱动器的驱动级来实现对步进电机各相绕组的通电和断电,同时也是对绕组承受的电压和电流进行控制的技术。

到目前为止,步进电机驱动技术通常分为单电压驱动、单电压串电阻驱动、高低压驱动、斩波恒流驱动、升频升压驱动和细分驱动等。

单电压驱动是通过改变电路的时间常数以提高电机的高频特性。

该驱动方式早在六十年代初期国外就已大量使用,它的优点是结构简单、成本低;缺点是串接电阻器的做法将产生大量的能量损耗,尤其是在高频工作时更加严重,因而它只适用于小功率或对性能指标要求不高的步进电机驱动。

单电压串电阻驱动是在单电压驱动技术的基础上为电枢绕组回路串入电阻,用以改善电路的时间常数以提高电机的高频特性。

它提高了步进电机的高频响应、减少了电动机的共振,也带来了损耗大、效率低的缺点。

这种驱动方式目前主要用于小功率或启动、运行频率要求不高的场合。

高低压驱动是指不论电动机的工作频率是多少,在导通相的前沿用高电压供电来提高电流的上升沿斜率,而在前沿过后采用低电压来维持绕组的电流,即采用加大绕组电流的注入量以提高出力,而不是通过改善电路的时间常数来使矩频性能得以提高。

但是使用这种驱动方式的电机,其绕组的电流波形在高压工作结束和低压工作开始的衔接处呈凹形,致使电机的输出力矩有所下降。

这种驱动方式目前在实际应用中还比较常见。

为了弥补高低压电路中电流波形的下凹,提高输出转矩,七十年代中期研制出斩波电路,该电路由于采用斩波技术,使绕组电流在额定值上下成锯齿形波动,流过绕组的有效电流相应增加,故电机的输出转矩增大,而且不需外接电阻,整个系统的功耗下降,效率较高,因而恒流斩波电路得到了广泛应用,本文正是应用恒流斩波技术实现了驱动控制。

为改善恒流驱动方式的低频特性,设计一个低速时低电压驱动,高速时高电压驱动的电路,使其成为一个由脉冲频率控制的可变输出电压的开关稳压驱动电源。

在低速运行时,电子控制器调节功率开关管的导通角,使线路输出的平均电压较低,电动机不会像在恒流斩波驱动下那样在低速容易出现过冲或共振现象,从而避免产生明显的振荡。

当运行速度逐渐变快时,平均电压渐渐提高以提供给绕组足够的电流。

调频调压线路性能优于恒电压和恒电流线路,但实际运行中需要针对不同参数的电机,相应调整其输出电压与输入频率的特性。

细分驱动是指在每次脉冲切换时,不是将绕组的全部电流通入或切除,而是只改变相应绕组中电流的一部分,电动机的合成磁势也只旋转步距角的一部分。

细分驱动时,绕组电流不是一个方波而是阶梯波,额定电流是台阶式的投入或切除。

比如:

电流分成n个台阶,转子则需要n次才转过一个步距角,即n细分,细分驱动最主要的优点是步距角变小,分辨率提高,且提高了电机的定位精度、启动性能和高频输出转矩:

其次,减弱或消除了步进电机的低频振动,降低了步迸电机在共振区工作的几率。

可以说细分驱动技术是步进电动机驱动与控制技术的一个飞跃。

4方案的论证

4.1控制方式的确定

步进电机控制是比较精确的,步进电机开环控制系统具有成本低、简单、控制方便等优点,在采用单片机的步进电机开环系统中,控制系统的CP脉冲的频率或者换向周期实际上就是控制步进电机的运行速度。

系统可用两种办法实现步进电机的速度控制。

一种是延时,一种是定时。

延时方法是在每次换向之后调用一个延时子程序,待延时结束后再次执行换向,这样周而复始就可发出一定频率的CP脉冲或换向周期。

延时子程序的延时时间与换向程序所用的时间和,就是CP脉冲的周期,该方法简单,占用资源少,全部由软件实现,调用不同的子程序可以实现不同速度的运行。

但占用CPU时间长,不能在运行时处理其他工作,因此只适合较简单的控制过程。

定时方法是利用单片机系统中的定时器定时功能产生任意周期的定时信号,从而可方便的控制系统输出CP脉冲的周期。

当定时器启动后,定时器从装载的初值开始对系统及其周期进行加计数,当定时器溢出时,定时器产生中断,系统转去执行定时中断子程序。

将电机换向子程序放在定时中断服务程序中,定时中断一次,电机换向一次,从而实现电机的速度控制。

由于从定时器装载完重新启动开始至定时器申请中断止,有一定的时间间隔,造成定时时间增加,为了减少这种定时误差,实现精确定时,要对重装的计数初值作适当的调整。

调整的重装初值主要考虑两个因素一是中断响应所需的时间,二是重装初值指令所占用的时间,包括在重装初值前中断服务程序重的其他指令因。

综合这两个因素后,重装计数初值的修正量取8个机器周期,即要使定时时间缩短8个机器周期。

用定时中断方式来控制电动机变速时,实际上是不断改变定时器装载值的大小。

在控制过程中,采用离散办法来逼近理想的升降速曲线。

为了减少每步计算装载值的时间,系统设计时就把各离散点的速度所需的装载值固化在系统的ROM中,系统在运行中用查表法查出所需的装载值,这样可大幅度减少占用CPU的时间,提高系统的响应速度愿大多数步进电机运动控制系统都运行在开环状态下,因为成本较低,并可提供运动控制技术固有的位置控制,无须反馈。

但是,在某些应用中,需要更多的可靠性、安全性或产品质量的保证,因此,闭环控制也是一种选择。

以下是一些实现步进电机闭环控制的方法:

1)步进确认,这是最简单的位移控制,使用一个低值的光学编码器计算步进移动的数量。

一个简单的回路与指令校验的步进电机比较,验证步进电机移动到预计的位置;

2)反电动势,一种无传感器的检测方法,使用步进电机的反电动势信号,测量和控

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1