投资学chap0077thed.docx

上传人:b****3 文档编号:4416858 上传时间:2022-12-01 格式:DOCX 页数:12 大小:193.32KB
下载 相关 举报
投资学chap0077thed.docx_第1页
第1页 / 共12页
投资学chap0077thed.docx_第2页
第2页 / 共12页
投资学chap0077thed.docx_第3页
第3页 / 共12页
投资学chap0077thed.docx_第4页
第4页 / 共12页
投资学chap0077thed.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

投资学chap0077thed.docx

《投资学chap0077thed.docx》由会员分享,可在线阅读,更多相关《投资学chap0077thed.docx(12页珍藏版)》请在冰豆网上搜索。

投资学chap0077thed.docx

投资学chap0077thed

CHAPTER7:

OPTIMALRISKYPORTFOLIOS

1.Thecorrectchoiceisc.Intuitively,wenotethatsinceallstockshavethesameexpectedrateofreturnandstandarddeviation,wechoosethestockthatwillresultinlowestrisk.ThisisthestockthathasthelowestcorrelationwithStockA.

Moreformally,wenotethatwhenallstockshavethesameexpectedrateofreturn,theoptimalportfolioforanyrisk-averseinvestoristheglobalminimumvarianceportfolio(G).WhentheportfolioisrestrictedtoStockAandoneadditionalstock,theobjectiveistofindGforanypairthatincludesStockA,andthenselectthecombinationwiththelowestvariance.Withtwostocks,IandJ,theformulafortheweightsinGis:

Sinceallstandarddeviationsareequalto20%:

Cov(rI,rJ)=ρσIσJ=400ρandwMin(I)=wMin(J)=0.5

Thisintuitiveresultisanimplicationofapropertyofanyefficientfrontier,namely,thatthecovariancesoftheglobalminimumvarianceportfoliowithallotherassetsonthefrontierareidenticalandequaltoitsownvariance.(Otherwise,additionaldiversificationwouldfurtherreducethevariance.)Inthiscase,thestandarddeviationofG(I,J)reducesto:

σMin(G)=[200(1+ρIJ)]1/2

ThisleadstotheintuitiveresultthatthedesiredadditionwouldbethestockwiththelowestcorrelationwithStockA,whichisStockD.TheoptimalportfolioisequallyinvestedinStockAandStockD,andthestandarddeviationis17.03%.

2.No,theanswertoProblem1wouldnotchange,atleastaslongasinvestorsarenotrisklovers.Riskneutralinvestorswouldnotcarewhichportfoliotheyheldsinceallportfolioshaveanexpectedreturnof8%.

 

3.No,theanswerstoProblems1and2wouldnotchange.Theefficientfrontierofriskyassetsishorizontalat8%,sotheoptimalCALrunsfromtherisk-freeratethroughG.ThebestPortfolioGis,again,theonewiththelowestvariance.Theoptimalcompleteportfoliodependsonriskaversion.

4.b.

5.False.Iftheborrowingandlendingratesarenotidentical,then,dependingonthetastesoftheindividuals(thatis,theshapeoftheirindifferencecurves),borrowersandlenderscouldhavedifferentoptimalriskyportfolios.

 

6.c.

 

7.σP=30=yσ=40yy=0.75

E(rP)=12+0.75(30-12)=25.5%

 

8.d.PortfolioYcannotbeefficientbecauseitisdominatedbyanotherportfolio.Forexample,PortfolioXhasbothhigherexpectedreturnandlowerstandarddeviation.

 

9.Theparametersoftheopportunitysetare:

E(rS)=20%,E(rB)=12%,σS=30%,σB=15%,ρ=0.10

Fromthestandarddeviationsandthecorrelationcoefficientwegeneratethecovariancematrix[notethatCov(rS,rB)=ρσSσB]:

Bonds

Stocks

Bonds

225

45

Stocks

45

900

Theminimum-varianceportfolioiscomputedasfollows:

wMin(S)=

wMin(B)=10.1739=0.8261

Theminimumvarianceportfoliomeanandstandarddeviationare:

E(rMin)=(0.1739⨯20)+(0.8261⨯12)=13.39%

σMin=

=[(0.17392900)+(0.82612225)+(20.17390.826145)]1/2

=13.92%

10.

Proportion

instockfund

Proportion

inbondfund

Expected

return

Standard

Deviation

0.00%

100.00%

12.00%

15.00%

17.39%

82.61%

13.39%

13.92%

minimumvariance

20.00%

80.00%

13.60%

13.94%

40.00%

60.00%

15.20%

15.70%

45.16%

54.84%

15.61%

16.54%

tangencyportfolio

60.00%

40.00%

16.80%

19.53%

80.00%

20.00%

18.40%

24.48%

100.00%

0.00%

20.00%

30.00%

Graphshownbelow.

 

11.

Thegraphindicatesthattheoptimalportfolioisthetangencyportfoliowithexpectedreturnapproximately15.6%andstandarddeviationapproximately16.5%.

12.Theproportionoftheoptimalriskyportfolioinvestedinthestockfundisgivenby:

wB=10.4516=0.5484

Themeanandstandarddeviationoftheoptimalriskyportfolioare:

E(rP)=(0.4516⨯20)+(0.5484⨯12)=15.61%

σp=[(0.45162900)+(0.54842225)+(20.45160.5484⨯45)]1/2

=16.54%

13.Thereward-to-variabilityratiooftheoptimalCALis:

 

14.a.Ifyourequirethatyourportfolioyieldanexpectedreturnof14%,thenyoucanfindthecorrespondingstandarddeviationfromtheoptimalCAL.TheequationforthisCALis:

SettingE(rC)equalto14%,wefindthatthestandarddeviationoftheoptimalportfoliois13.04%.

b.TofindtheproportioninvestedintheT-billfund,rememberthatthemeanofthecompleteportfolio(i.e.,14%)isanaverageoftheT-billrateandtheoptimalcombinationofstocksandbonds(P).LetybetheproportioninvestedintheportfolioP.ThemeanofanyportfolioalongtheoptimalCALis:

E(rC)=(l-y)rf+yE(rP)=rf+y[E(rP)-rf]=8+y(15.61-8)

SettingE(rC)=14%wefind:

y=0.7884and(1-y)=0.2116(theproportioninvestedintheT-billfund).

Tofindtheproportionsinvestedineachofthefunds,multiply0.7884timestherespectiveproportionsofstocksandbondsintheoptimalriskyportfolio:

Proportionofstocksincompleteportfolio=0.78840.4516=0.3560

Proportionofbondsincompleteportfolio=0.78840.5484=0.4324

15.Usingonlythestockandbondfundstoachieveaportfolioexpectedreturnof14%,wemustfindtheappropriateproportioninthestockfund(wS)andtheappropriateproportioninthebondfund(wB=1-wS)asfollows:

14=20wS+12(1-wS)=12+8wSwS=0.25

Sotheproportionsare25%investedinthestockfundand75%inthebondfund.Thestandarddeviationofthisportfoliowillbe:

σP=[(0.252900)+(0.752225)+(20.250.7545)]1/2=14.13%

Thisisconsiderablygreaterthanthestandarddeviationof13.04%achievedusingT-billsandtheoptimalportfolio.

 

16.False.Theportfoliostandarddeviationequalstheweightedaverageofthecomponent-assetstandarddeviationsonlyinthespecialcasethatallassetsareperfectlypositivelycorrelated.Otherwise,astheformulaforportfoliostandarddeviationshows,theportfoliostandarddeviationislessthantheweightedaverageofthecomponent-assetstandarddeviations.Theportfoliovarianceisaweightedsumoftheelementsinthecovariancematrix,withtheproductsoftheportfolioproportionsasweights.

 

17.d.

 

18.SinceStockAandStockBareperfectlynegativelycorrelated,arisk-freeportfoliocanbecreatedandtherateofreturnforthisportfolio,inequilibrium,willbetherisk-freerate.Tofindtheproportionsofthisportfolio[withtheproportionwAinvestedinStockAandwB=(1–wA)investedinStockB],setthestandarddeviationequaltozero.Withperfectnegativecorrelation,theportfoliostandarddeviationis:

σP=Absolutevalue[wAσAwBσB]

0=5wA-[10(1–wA)]wA=0.6667

Theexpectedrateofreturnforthisrisk-freeportfoliois:

E(r)=(0.6667⨯10)+(0.3333⨯15)=11.667%

Therefore,therisk-freerateis11.667%.

19.a.

Eventhoughitseemsthatgoldisdominatedbystocks,goldmightstillbeanattractiveassettoholdasapartofaportfolio.Ifthecorrelationbetweengoldandstocksissufficientlylow,goldwillbeheldasacomponentinaportfolio,specifically,theoptimaltangencyportfolio.

b.Ifthecorrelationbetweengoldandstocksequals+1,thennoonewouldholdgold.TheoptimalCALwouldbecomprisedofbillsandstocksonly.Sincethesetofrisk/returncombinationsofstocksandgoldwouldplotasastraightlinewithanegativeslope(seethefollowinggraph),thesecombinationswouldbedominatedbythestockportfolio.Ofcourse,thissituationcouldnotpersist.Ifnoonedesiredgold,itspricewouldfallanditsexpectedrateofreturnwouldincreaseuntilitbecamesufficientlyattractivetoincludeinaportfolio.

 

20.a.Restrictingtheportfolioto20stocks,ratherthan40to50stocks,willincreasetheriskoftheportfolio,butitispossiblethattheincreaseinriskwillbeminimal.Supposethat,forinstance,the50stocksinauniversehavethesamestandarddeviation()andthecorrelationsbetweeneachpairareidentical,withcorrelationcoefficientρ.Then,thecovariancebetweeneachpairofstockswouldbeρσ2,andthevarianceofanequallyweightedportfoliowouldbe:

Theeffectofthereductioninnonthesecondtermontheright-handsidewouldberelativelysmall(since49/50iscloseto19/20andρσ2issmallerthanσ2),butthedenominatorofthefirsttermwouldbe20insteadof50.Forexample,if

σ=45%andρ=0.2,thenthestandarddeviationwith50stockswouldbe20.91%,andwouldriseto22.05%whenonly20stocksareheld.Suchanincreasemightbeacceptableiftheexpectedreturnisincreasedsufficiently.

b.Hennessycouldcontaintheincreaseinriskbymakingsurethathemaintainsreasonablediversificationamongthe20stocksthatremaininhisportfolio.Thisentailsmaintainingalowcorrelationamongtheremainingstocks.Forexample,inpart(a),withρ=0.2,theincreaseinportfolioriskwasminimal.Asapracticalmatter,thismeansthatHennessywouldhavetospreadhisportfolioamongmanyindustries;concentratingonjustafewindustrieswouldresultinhighercorrelationsamongtheincludedstocks.

21.Riskreductionbenefitsfromdiversificationarenotalinearfunctionofthenumberofissuesintheportfolio.Rather,theincrementalbenefitsfromadditionaldiversificationaremostimportantwhenyouareleastdiversified.RestrictingHennessyto10insteadof20issueswouldincreasetheriskofhisportfoliobyagreateramountthanwouldareductioninthesizeoftheportfoliofrom30to20stocks.Inourexample,restrictingthenumberofstocksto10willincreasethestandarddeviationto23.81%.The1.76%increaseinstandarddeviationresultingfromgivingup10of20stocksisgreaterthanthe1.14%increasethatresultsfromgivingup30of50stocks.

 

22.Thepointiswelltaken

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 视频讲堂

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1