投资学chap0077thed.docx
《投资学chap0077thed.docx》由会员分享,可在线阅读,更多相关《投资学chap0077thed.docx(12页珍藏版)》请在冰豆网上搜索。
投资学chap0077thed
CHAPTER7:
OPTIMALRISKYPORTFOLIOS
1.Thecorrectchoiceisc.Intuitively,wenotethatsinceallstockshavethesameexpectedrateofreturnandstandarddeviation,wechoosethestockthatwillresultinlowestrisk.ThisisthestockthathasthelowestcorrelationwithStockA.
Moreformally,wenotethatwhenallstockshavethesameexpectedrateofreturn,theoptimalportfolioforanyrisk-averseinvestoristheglobalminimumvarianceportfolio(G).WhentheportfolioisrestrictedtoStockAandoneadditionalstock,theobjectiveistofindGforanypairthatincludesStockA,andthenselectthecombinationwiththelowestvariance.Withtwostocks,IandJ,theformulafortheweightsinGis:
Sinceallstandarddeviationsareequalto20%:
Cov(rI,rJ)=ρσIσJ=400ρandwMin(I)=wMin(J)=0.5
Thisintuitiveresultisanimplicationofapropertyofanyefficientfrontier,namely,thatthecovariancesoftheglobalminimumvarianceportfoliowithallotherassetsonthefrontierareidenticalandequaltoitsownvariance.(Otherwise,additionaldiversificationwouldfurtherreducethevariance.)Inthiscase,thestandarddeviationofG(I,J)reducesto:
σMin(G)=[200(1+ρIJ)]1/2
ThisleadstotheintuitiveresultthatthedesiredadditionwouldbethestockwiththelowestcorrelationwithStockA,whichisStockD.TheoptimalportfolioisequallyinvestedinStockAandStockD,andthestandarddeviationis17.03%.
2.No,theanswertoProblem1wouldnotchange,atleastaslongasinvestorsarenotrisklovers.Riskneutralinvestorswouldnotcarewhichportfoliotheyheldsinceallportfolioshaveanexpectedreturnof8%.
3.No,theanswerstoProblems1and2wouldnotchange.Theefficientfrontierofriskyassetsishorizontalat8%,sotheoptimalCALrunsfromtherisk-freeratethroughG.ThebestPortfolioGis,again,theonewiththelowestvariance.Theoptimalcompleteportfoliodependsonriskaversion.
4.b.
5.False.Iftheborrowingandlendingratesarenotidentical,then,dependingonthetastesoftheindividuals(thatis,theshapeoftheirindifferencecurves),borrowersandlenderscouldhavedifferentoptimalriskyportfolios.
6.c.
7.σP=30=yσ=40yy=0.75
E(rP)=12+0.75(30-12)=25.5%
8.d.PortfolioYcannotbeefficientbecauseitisdominatedbyanotherportfolio.Forexample,PortfolioXhasbothhigherexpectedreturnandlowerstandarddeviation.
9.Theparametersoftheopportunitysetare:
E(rS)=20%,E(rB)=12%,σS=30%,σB=15%,ρ=0.10
Fromthestandarddeviationsandthecorrelationcoefficientwegeneratethecovariancematrix[notethatCov(rS,rB)=ρσSσB]:
Bonds
Stocks
Bonds
225
45
Stocks
45
900
Theminimum-varianceportfolioiscomputedasfollows:
wMin(S)=
wMin(B)=10.1739=0.8261
Theminimumvarianceportfoliomeanandstandarddeviationare:
E(rMin)=(0.1739⨯20)+(0.8261⨯12)=13.39%
σMin=
=[(0.17392900)+(0.82612225)+(20.17390.826145)]1/2
=13.92%
10.
Proportion
instockfund
Proportion
inbondfund
Expected
return
Standard
Deviation
0.00%
100.00%
12.00%
15.00%
17.39%
82.61%
13.39%
13.92%
minimumvariance
20.00%
80.00%
13.60%
13.94%
40.00%
60.00%
15.20%
15.70%
45.16%
54.84%
15.61%
16.54%
tangencyportfolio
60.00%
40.00%
16.80%
19.53%
80.00%
20.00%
18.40%
24.48%
100.00%
0.00%
20.00%
30.00%
Graphshownbelow.
11.
Thegraphindicatesthattheoptimalportfolioisthetangencyportfoliowithexpectedreturnapproximately15.6%andstandarddeviationapproximately16.5%.
12.Theproportionoftheoptimalriskyportfolioinvestedinthestockfundisgivenby:
wB=10.4516=0.5484
Themeanandstandarddeviationoftheoptimalriskyportfolioare:
E(rP)=(0.4516⨯20)+(0.5484⨯12)=15.61%
σp=[(0.45162900)+(0.54842225)+(20.45160.5484⨯45)]1/2
=16.54%
13.Thereward-to-variabilityratiooftheoptimalCALis:
14.a.Ifyourequirethatyourportfolioyieldanexpectedreturnof14%,thenyoucanfindthecorrespondingstandarddeviationfromtheoptimalCAL.TheequationforthisCALis:
SettingE(rC)equalto14%,wefindthatthestandarddeviationoftheoptimalportfoliois13.04%.
b.TofindtheproportioninvestedintheT-billfund,rememberthatthemeanofthecompleteportfolio(i.e.,14%)isanaverageoftheT-billrateandtheoptimalcombinationofstocksandbonds(P).LetybetheproportioninvestedintheportfolioP.ThemeanofanyportfolioalongtheoptimalCALis:
E(rC)=(l-y)rf+yE(rP)=rf+y[E(rP)-rf]=8+y(15.61-8)
SettingE(rC)=14%wefind:
y=0.7884and(1-y)=0.2116(theproportioninvestedintheT-billfund).
Tofindtheproportionsinvestedineachofthefunds,multiply0.7884timestherespectiveproportionsofstocksandbondsintheoptimalriskyportfolio:
Proportionofstocksincompleteportfolio=0.78840.4516=0.3560
Proportionofbondsincompleteportfolio=0.78840.5484=0.4324
15.Usingonlythestockandbondfundstoachieveaportfolioexpectedreturnof14%,wemustfindtheappropriateproportioninthestockfund(wS)andtheappropriateproportioninthebondfund(wB=1-wS)asfollows:
14=20wS+12(1-wS)=12+8wSwS=0.25
Sotheproportionsare25%investedinthestockfundand75%inthebondfund.Thestandarddeviationofthisportfoliowillbe:
σP=[(0.252900)+(0.752225)+(20.250.7545)]1/2=14.13%
Thisisconsiderablygreaterthanthestandarddeviationof13.04%achievedusingT-billsandtheoptimalportfolio.
16.False.Theportfoliostandarddeviationequalstheweightedaverageofthecomponent-assetstandarddeviationsonlyinthespecialcasethatallassetsareperfectlypositivelycorrelated.Otherwise,astheformulaforportfoliostandarddeviationshows,theportfoliostandarddeviationislessthantheweightedaverageofthecomponent-assetstandarddeviations.Theportfoliovarianceisaweightedsumoftheelementsinthecovariancematrix,withtheproductsoftheportfolioproportionsasweights.
17.d.
18.SinceStockAandStockBareperfectlynegativelycorrelated,arisk-freeportfoliocanbecreatedandtherateofreturnforthisportfolio,inequilibrium,willbetherisk-freerate.Tofindtheproportionsofthisportfolio[withtheproportionwAinvestedinStockAandwB=(1–wA)investedinStockB],setthestandarddeviationequaltozero.Withperfectnegativecorrelation,theportfoliostandarddeviationis:
σP=Absolutevalue[wAσAwBσB]
0=5wA-[10(1–wA)]wA=0.6667
Theexpectedrateofreturnforthisrisk-freeportfoliois:
E(r)=(0.6667⨯10)+(0.3333⨯15)=11.667%
Therefore,therisk-freerateis11.667%.
19.a.
Eventhoughitseemsthatgoldisdominatedbystocks,goldmightstillbeanattractiveassettoholdasapartofaportfolio.Ifthecorrelationbetweengoldandstocksissufficientlylow,goldwillbeheldasacomponentinaportfolio,specifically,theoptimaltangencyportfolio.
b.Ifthecorrelationbetweengoldandstocksequals+1,thennoonewouldholdgold.TheoptimalCALwouldbecomprisedofbillsandstocksonly.Sincethesetofrisk/returncombinationsofstocksandgoldwouldplotasastraightlinewithanegativeslope(seethefollowinggraph),thesecombinationswouldbedominatedbythestockportfolio.Ofcourse,thissituationcouldnotpersist.Ifnoonedesiredgold,itspricewouldfallanditsexpectedrateofreturnwouldincreaseuntilitbecamesufficientlyattractivetoincludeinaportfolio.
20.a.Restrictingtheportfolioto20stocks,ratherthan40to50stocks,willincreasetheriskoftheportfolio,butitispossiblethattheincreaseinriskwillbeminimal.Supposethat,forinstance,the50stocksinauniversehavethesamestandarddeviation()andthecorrelationsbetweeneachpairareidentical,withcorrelationcoefficientρ.Then,thecovariancebetweeneachpairofstockswouldbeρσ2,andthevarianceofanequallyweightedportfoliowouldbe:
Theeffectofthereductioninnonthesecondtermontheright-handsidewouldberelativelysmall(since49/50iscloseto19/20andρσ2issmallerthanσ2),butthedenominatorofthefirsttermwouldbe20insteadof50.Forexample,if
σ=45%andρ=0.2,thenthestandarddeviationwith50stockswouldbe20.91%,andwouldriseto22.05%whenonly20stocksareheld.Suchanincreasemightbeacceptableiftheexpectedreturnisincreasedsufficiently.
b.Hennessycouldcontaintheincreaseinriskbymakingsurethathemaintainsreasonablediversificationamongthe20stocksthatremaininhisportfolio.Thisentailsmaintainingalowcorrelationamongtheremainingstocks.Forexample,inpart(a),withρ=0.2,theincreaseinportfolioriskwasminimal.Asapracticalmatter,thismeansthatHennessywouldhavetospreadhisportfolioamongmanyindustries;concentratingonjustafewindustrieswouldresultinhighercorrelationsamongtheincludedstocks.
21.Riskreductionbenefitsfromdiversificationarenotalinearfunctionofthenumberofissuesintheportfolio.Rather,theincrementalbenefitsfromadditionaldiversificationaremostimportantwhenyouareleastdiversified.RestrictingHennessyto10insteadof20issueswouldincreasetheriskofhisportfoliobyagreateramountthanwouldareductioninthesizeoftheportfoliofrom30to20stocks.Inourexample,restrictingthenumberofstocksto10willincreasethestandarddeviationto23.81%.The1.76%increaseinstandarddeviationresultingfromgivingup10of20stocksisgreaterthanthe1.14%increasethatresultsfromgivingup30of50stocks.
22.Thepointiswelltaken