而回程时,由于ds/dδ为负,式中分子为|(ds/dδ)-e|=|(ds/dδ)|+|e|>ds/dδ。
故压力角增大。
负偏置时刚相反,即正偏置会使推程压力角减小,回程压力角增大;负偏置会使推程压力角增大,回程压力角减小。
9—7试标出题9—6a图在图示位置时凸轮机构的压力角,凸轮从图示位置转过90º后推杆的位移;并标出题9—6b图推杆从图示位置升高位移s时,凸轮的转角和凸轮机构的压力角。
解如图(a)所示,用直线连接圆盘凸轮圆心A和滚子中心B,则直线AB与推杆导路之间所夹的锐角为图示位置时凸轮机构的压力角。
以A为圆心,AB为半径作圆,得凸轮的理论廓线圆。
连接A与凸轮的转动中心O并延长,交于凸轮的理论廓线于C点。
以O为圆心.以OC为半径作圆得凸轮的基圆。
以O为圆心,以O点到推杆导路的距离OD为半径作圆得推杆的偏距圆;。
延长推杆导路线交基圆于G-点,以直线连接OG。
过O点作OG的垂线,交基圆于E点。
过E点在偏距圆的下侧作切线.切点为H点.交理论廓线于F点,则线段EF的长即为凸轮从图示位置转过90后推杆的位移s。
方法同前,在图(b)中分别作出凸轮的理论廓线、基圆、推杆的偏距圆。
延长推杆导路线交基圆于G点,以直线连接OG。
以O为圆心,以滚子中心升高s后滚子的转动中心K到O点的距离OK为半径作圆弧,交理论廓线于F点。
过F点作偏距圆的切线,交基圆于E点,切点为H。
则∠GOE为推杆从图示位置升高位移s时-凸轮的转角,∠AFH为此时凸轮机构的压力角。
(a)(b)
9—8在图示凸轮机构中,圆弧底摆动推杆与凸轮在B点接触。
当凸轮从图示位置逆时针转过90。
时,试用图解法标出:
1)推杆在凸轮上的接触点;
2)摆杆位移角的大小;
3)凸轮机构的压力角。
解如图所示,以O为圆心,以O点到推杆转动中心A的距离AO为半径作圆,得推杆转动中心反转位置圆。
过O点怍OA的垂线,交推杆转动中心反转位置圆于D点。
以O`为圆心.以O`点到推杆圆弧圆心C的距离CO’为半径作圆.得凸轮的理论廓线。
以O为圆心,作圆内切于凸轮的理论廓线圆,得凸轮的基圆。
以D为圆心,以AC为半径作圆弧,交凸轮的理论廓线于E点,交凸轮的圆于G点。
用直线连接EO’,交凸轮的实际廓线于F点,此即为推杆在凸轮上的接触点;而∠GDE即为摆杆的位移角;过E点并垂直于DE的直线与直线EF间所夹的锐角即为此时凸轮机构的压力角。
9—9已知凸轮角速度为1.5rad/s,凸轮转角
时,推杆等速上升16mm;
时推杆远休,
时推杆下降16mm;
时推杆近休。
试选择合适的推杆推程运动规律,以实现其最大加速度值最小,并画出其运动线图。
解推杆在推程及回程段运动规律的位移方程为:
(1)推程:
s=hδ/δ00º≤δ≤150º
(2)回程:
等加速段s=h一2hδ2/δ`020º≤δ≤60º
等减速段s=2h(δ’一δ)2/δ0`260º≤δ≤120º
计算各分点的位移值如表9.3:
根据表9-3可作所求图如下图:
9—10设计一凸轮机构,凸轮转动一周时间为2s。
凸轮的推程运动角为60º,回程运动角为150。
,近休止运动角为150º。
推杆的行程为15mm。
试选择合适的推杆升程和回程的运动规律,使得其最大速度值最小,并画出运动线图。
9一11试设计一对心直动滚子推杆盘形凸轮机构,滚子半径r,=10mm,凸轮以等角速度逆时针回转。
凸轮转角δ=0º~120º时,推杆等速上升20mm;δ=120º~180º时,推杆远休止;δ=180º~270º时,推杆等加速等减速下降20mm;δ=270º~:
360º时,推杆近休止。
要求推程的最大压力角α。
。
≤30º,试选取合适的基圆半径,并绘制凸轮的廓线。
问此凸轮机构是否有缺陷,应如何补救。
9一12试设计一个对心平底直动推杆盘形凸轮机构凸轮的轮廓曲线。
设已知凸轮基圆半径rn=30mm,推杆平底与导轨的中心线垂直,凸轮顺时针方向等速转动。
当凸轮转过120~1~r推杆以余弦加速度运动上升20。
。
,再转过150º时,推杆又以余弦加速度运动回到原位,凸轮转过其余90º时,推杆静止不动。
问这种凸轮机构压力角的变化规律如何?
是否也存在自锁问题?
若有,应如何避免?
解推杆在推程及回程运动规律的位移方程为
(1)推程
S=h[1-cos(πδ/δ0)]/2:
0º≤δ≤120º
(2)回程.
S=h[1+cos(πδ/δ0`)]/20º≤δ≤150º
计算各分点的位移值如表9-4l:
根据表9-4可作所求图如下图:
这种凸轮机构的压力角为一定值,它恒等于平底与导路所夹锐角的余角.与其他因素无关。
这种凸轮机构也会是存在自锁问题,为了避免自锁.在设计时应该在结构许可的条件下,尽可能取较大的推杆导路导轨的长度。
并尽可能减小推gan9的悬臂尺寸。
9一13一摆动滚子推杆盘形凸轮机构(参看图9—23),已知lOA=60mmr0=25mm,lAB=50mm,rr=8mm。
凸轮顺时针方向等速转动,要求当凸轮转过180º时,推杆以余弦加速度运动向上摆动25º;转过一周中的其余角度时,推杆以正弦加速度运动摆回到原位置。
试以作图法设计凸轮的工作廓线。
解推扦在推程及回程段运动规律的位移方程为
(1)推程:
s=Φ[1-cos(πδ/δ0)/20º≤δ≤180º
(2)回程:
s=Φ[1-(δ/δ`0)十sin(2πδ/δ`0)]/(2π)oº≤δ≤180º
计算各分点的位移值如表9.5:
根据表9。
5作图如图所示
9—14试设计偏置直动滚子推杆盘形凸轮机构凸轮的理论轮廓曲线和工作廓线。
已知凸轮轴置于推杆轴线右侧,偏距e=20mm,基圆半径r。
=50mm,滚子半径r,=10mm。
凸轮以等角速度沿顺时针方向回转,在凸轮转过角占,:
120。
的过程中,推杆按正弦加速度运动规律上升矗=50mm;凸轮继续转过炙=30。
时,推杆保持不动;其后,凸轮再回转角度如=60时,推杆又按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。
解
(1)汁算推杆的位移并对凸轮转角求导:
当凸轮转角δ在o≤δ≤2π/3过程中,推杆按正弦加速度运动规律上升h=50rnm。
则
可得
0≤δ≤2π/3
0≤δ≤2π/3
当凸轮转角占在2π/3≤δ≤5π/6过程中,推杆远休。
S=50,2π/3≤δ≤5π/6
ds/dδ=0,2π/3≤δ≤5π/6
当凸轮转角δ在5π/6≤δ≤7π/6过程中,推杆又按余弦加速度运动规律下
降至起始位置。
则
可得
5π/6≤δ≤7π/6
5π/6≤δ≤7π/6
当凸轮转角δ在7π/6≤δ≤2π过程中,推杆近休。
S=07π/6≤δ≤2π
ds/dδ=07π≤δ≤2π
(2)计算凸轮的理论廓线和实际廓线:
i
本题的计算简图如图(a)所示。
选取坐标系如图(b)所示,由图(b)可知,凸轮理论廓线上B点(即滚子中心)的直角坐标为:
x=(s0+s)cosδ-esinδ
y=(s0+s)sinδ+ecosδ
式中:
s0=(r02-e2)1/2=(502-202)1/2=45.826mm
由图(b)可知凸轮实际廓线的方程即B’点的坐标方程式为i
x`=x-rrcosθ
Y`=y-rrsinθ
因为dy/dδ=(ds/dδ-e)sinδ+(s0+s)cosδ
dx/dδ=(ds/dδ-e)cosδ-(s0-s)sinδ
所以
故x`=x-10cosθ
y`=y-10sinθ
由上述公式可得理论轮廓曲线和工作廓线的直角坐标.计算结果如表9.6
凸轮廓线如下图昕示。
9—15图示为一旅行用轻便剃须刀,图a为工作位置,图b为正在收起的位置(整个刀夹可以收入外壳中)。
在刀夹上有两个推杆A、B,各有一个销A’、B’,分别插入外壳里面的两个内凸轮槽中。
按图a所示箭头方向旋转旋钮套时(在旋钮套中部有两个长槽,推杆上的销从中穿过,使两推杆只能在旋钮套中移动,而不能相对于旋钮套转动),刀夹一方面跟着旋钮套旋转,并同时从外壳中逐渐伸出,再旋转至水平位置(工作位置)。
按图b所示箭头方向旋转旋钮套时,刀夹也一方面跟着旋钮套旋转,并先沿逆时针方向转过90。
成垂直位置,再逐渐全部缩回外壳中。
要求设计外壳中的两凸轮槽(展开图),使该剃须刀能完成上述动作,设计中所需各尺寸可从图中量取,全部动作在旋钮套转过2”角的过程中完成。
,内有凸轮槽
解由题意知。
两推杆相差180º布置,所以它们各自对应的凸轮槽应为等
距线。
当两销予都到达推杆B的最高位置时.推杆B不再升高.而推轩A继续升
高,此段推杆B对应的凸轮槽应为水平的,而推杆A对应的凸轮槽不变。
为了安
装方便.将推杆A.B所对应的凸轮槽与端部连通。
为了保证能同时将A,B推杆
以及旋钮套从外壳中取出.将凸轮槽适当向水平方向伸展。
据此没计凸轮槽展
开图如图所示。
图中.第l位置为两推杆最下位置时情况:
第4位置为推杆B不再上升而推
杆A继续上升的情况;第5位置为题图中的工作位置。
第6,7位置是装拆时的
位置。
9—16武求一划心平底推杆盘形凸轮机构凸轮的廓线方程。
设巳知推《
的平底与其导轨的中心线垂直,凸轮的茉圆半径h==45mzn。
凸轮沿顺时针j
向等速转动。
当凸轮转过120。
时.推杆以等加速等减速运动上升15mm:
凸柑
转过9(,。
时,推扦以正弦加速度运动回到原位置:
(-h轮转过一用中的其余角l
时,推柑:
静止不动。
解
(1)纠’算推杆的位移并对凸轮转角求导:
当凸轮转角艿在0≤艿≤2n/3越程中,推杆以等加速等减速运动上j
15mitt。
其中,当0≤艿≤“/3时·为等加速阶段,则
s一2^等.
蕊
碟s—z^簧一淼筹。
≤占≤棚
卷=尝=藩等。
≤占≤”/3/3
d艿艿;(2Ⅱ)!
。
、。
“、“
当”j‘3≤艿≤27r/3时,为等减速阶段,ijl0
(丽~艿)。
跻
-hi得
一卜2n盟≯-=¨一蔓篙簪型“/3≤艿≤2“j3
坐=!
等≯_型器笋型∥3≤艿≤2”/3d3
掰(2Ⅱ/3)。
…、、、、…
当凸轮转角毋在2“/3≤占≤7~116过程中,推杆以正弦加速度运动回到原位
髓,…
一叫卜务
sm(27r艿/a?
)
2丌
l2~'/3≤艿≤%r1'6
词。
得
,j。
艿一艿。
:
1r2"(艿一艿。
)-11-
。
…叫。
j卜一一Ft磊刚“l…一7;一一lf。
28—4Ⅱ/3
1..,1
+麦。
i“[“(艿一0"/’∽]}2~r./3<-7f}≤7“/6
尘d3一卦。
s严铲!
卜,}=
一。
F1∞。
I…_瑟一~r‘}=
兰一争‰s㈨一2删一)卜_l}
当凸轮转角艿在7n≤艿≤2“过程中,推杆近休。
’S一077e≤艿≤27e
ds?
、
一一fl
de3
(2)汁算凸轮的实际廓线。
本题的汁算简图如图9。
21所示,选取坐标系如图所示。
由圈可知B点的坐
标为
z一(h十s)sin6'一(ds/'d3)cos8
y—t%+s)COS一(ds/dS)sin,7
由上述公式可得理论轮廓曲线和工作廓线的直角坐标,计算结果如表9.7,
凸轮廓线如图9。
22所示。