实验四IIR数字滤波器的设计实验分析报告.docx

上传人:b****6 文档编号:4353018 上传时间:2022-11-30 格式:DOCX 页数:12 大小:142.35KB
下载 相关 举报
实验四IIR数字滤波器的设计实验分析报告.docx_第1页
第1页 / 共12页
实验四IIR数字滤波器的设计实验分析报告.docx_第2页
第2页 / 共12页
实验四IIR数字滤波器的设计实验分析报告.docx_第3页
第3页 / 共12页
实验四IIR数字滤波器的设计实验分析报告.docx_第4页
第4页 / 共12页
实验四IIR数字滤波器的设计实验分析报告.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

实验四IIR数字滤波器的设计实验分析报告.docx

《实验四IIR数字滤波器的设计实验分析报告.docx》由会员分享,可在线阅读,更多相关《实验四IIR数字滤波器的设计实验分析报告.docx(12页珍藏版)》请在冰豆网上搜索。

实验四IIR数字滤波器的设计实验分析报告.docx

实验四IIR数字滤波器的设计实验分析报告

实验四-IIR数字滤波器的设计

实验报告

作者:

日期:

HUNANUNIVERSITYOFTECHNOLOGY

数字信号处理

实验报告

实验四IIR数字滤波器的设计

 

学班学指

张志翔

电子信息工程1203班

12401720522

2015429

3/17

 

实验四IIR数字滤波器的设计

一、实验目的:

1.掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体

设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低

通、高通和带通IIR数字滤波器的MATLA编程。

2.观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了

解双线性变换法及脉冲响应不变法的特点。

3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:

1.脉冲响应不变法

用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则

12

zeST〒Ha(SJ—m)

ImI

2.双线性变换法

S平面与z平面之间满足以下映射关系:

1

S

2

1

T

S

2

(sj;zreJ)

21z1

ST1z1'z

S平面的虚轴单值地映射于z平面的单位圆上,S平面的左半平面完

全映射到z平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变

可通过预畸而得到校正。

三、实验内容及步骤:

实验中有关变量的定义:

fc通带边界频率;fr阻带边界频率;3通带波动;At最小阻

带衰减;fs采样频率;T采样周期

(1)=0.3KHz,S=0.8Db,=0.2KHz,At=20Db,T=1ms;

设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLA源程序:

wp=2*1000*tan(2*pi*300/(2*1000));

ws=2*1000*tan(2*pi*200/(2*1000));

[N,wn]=cheb1ord(wp,ws,0.8,20,'s');%给定通带(wp)和阻带(ws)

边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn

[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)

边界角频率,通带波动

[num,den]=bilinear(BA1000);

[h,w]=freqz(num,den);

f=w/(2*pi)*1000;

plot(f,20*log10(abs(h)));

axis([0,500,-80,10]);

grid;xlabel('频率');ylabel('幅度/dB')

程序结果

num=0.0304-0.1218

0.1827-0.12180.0304

den=11.38341.47210.80120.2286

=0.0304-0.1218Z10.1827z2-0.1218z30.0304z4

系统函数:

=1.0000+1.3834z1+1.4721z2+0.8012z3+0.2286z4

幅频响应图:

Figure1

FileEditViewInsertToolsDesktopWindowHelp

1□曰H◎In|鬓%巴®记XT尿□目■口

6/17

 

分析:

由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰

减的。

3=0.8,fr=0.2kHz,At=30Db,满足设计要求

(2)fc=0.2kHz,S=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一Butterworth数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。

比较这两种方法的优缺点。

MATLA源程序:

T=0.001;fs=1000;fc=200;fr=300;

wp1=2*pi*fc;wr1=2*pi*fr;

[N1,wn1]=buttord(wp1,wr1,1,25,'s')

[B1,A1]=butter(N1,wn1,'s');

[num1,den1]=impinvar(B1,A1,fs);%脉冲响应不变法

[h1,w]=freqz(num1,den1);

wp2=2*fs*tan(2*pi*fc/(2*fs))

wr2=2*fs*tan(2*pi*fr/(2*fs))

[N2,wn2]=buttord(wp2,wr2,1,25,'s')

[B2,A2]=butter(N2,wn2,'s');

[num2,den2]=bilinear(B2,A2,fs);%双线性变换法

[h2,w]=freqz(num2,den2);

f=w/(2*pi)*fs;

plot(f,20*log10(abs(h1)),'-.',f,20*log10(abs(h2)),'-');

axis([0,500,-100,10]);grid;xlabel('频率/Hz');ylabel('幅度

/dB')

title('巴特沃思数字低通滤波器');

legend('脉冲相应不变法','双线性变换法',1);

结果分析:

脉冲响应不变法的低通滤波器系统函数:

num1-2.36470.00020.01530.09950.14440.0611

0.00750.00023.65690

den11-1.91992.5324-2.20531.3868-0.6309

0.2045-0.04500.0060-0.0004

2.36470.0002Z0.0153Z0.0995Z0.1444Z0.0611Z0.0075Z0.0002Z3.6569Z

LJ(

11.9199Z2.5324Z2.2053Z1.3869Z0.6309Z0.2045Z0.0450Z0.0060Z0.0004Z

双线性变换法设计的低通滤波器系统函数

num2

0.01790.10720.26810.35750.2681

0.10720.0179

den2

1-0.60190.9130-0.29890.1501-0.0208

0.0025

H(z)

0.01790.1072Z10.2681Z20.3575z30.2681z40.1072z50.0176z6

10.6019Z10.9130Z20.2989z30.1501z40.0208z50.0025z6

Figure1

FileEditVie-wInsirrtTo-qIs

C^skitop

Help

10p

0

-10-

-20-

-30-

■40-

-&0-

-60

-70-

-30-

怎|快头窃物凰虫*魁□回:

O

巴特瀝县魏字低通涯浜器

:

:

——脉冲扁应不变法

…T—双缱性賁换法

•1叫

50100150200250300350400450500

 

分析:

脉冲响应不变法的频率变化是线性的,数字滤波器频谱响应出现了混叠,影响了过渡带的衰减特性,并且无传输零点;双线性变化法的频率响应是非线性的,因而消除了频谱混叠,在f=500Hz出有一个传输零点。

脉冲响应不变法的一个重要特点是频率坐标的变换是线性的,w=QT,®与Q是线性关系:

在某些场合,要求数字滤波器在时域上能模仿模拟滤波器的功能时,如要实现时域冲激响应的模仿,一般使用脉冲响应不变法。

脉冲响应不变法的最大缺点:

有频谱周期延拓效应,因此只能用于带限的频响特性,如衰减特性很好的低通或带通,而高频衰减越大,频响的混淆效应越小,至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中,此时可增加一保护滤波器,滤

9/17

掉高于的频带,再用脉冲响应不变法转换为数字滤波器,这会增

加设计的复杂性和滤波器阶数,只有在一定要满足频率线性关系或保持网络瞬态响应时才采用。

双线性变换法的主要优点是S平面与Z平面一一单值对应,s平面的虚轴(整个jQ)对应于Z平面单位圆的一周,S平面的Q=0处对应于Z平面的3=0处,Q二乂处对应于Z平面的3=n处,即数字滤波器的频率响应终止于折叠频率处,所以双线性变换不存在混迭效应。

双线性变换缺点:

Q与3成非线性关系,导致:

a.数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变,

(使数字滤波器与模拟滤波器在响应与频率的对应关系上发生畸变)。

b.线性相位模拟滤波器经双线性变换后,得到的数字滤波器为非线性相位。

c.要求模拟滤波器的幅频响应必须是分段恒定的,故双线性变换只

能用于设计低通、高通、带通、带阻等选频滤波器。

(3)利用双线性变换法分别设计满足下列指标的Butterworth型、

Chebyshev型和椭圆型数字低通滤波器,并作图验证设计结果:

fc=1.2kHz,0.5dB,fr=2kHz,At>40dB,fs=8kHz,比较这

种滤波器的阶数。

MATLA源程序:

clearall;

wc=2*pi*1200;wr=2*pi*2000;rp=0.5;rs=40;fs=8000;

w1二2*fs*tan(wc/(2*fs));

w2=2*fs*tan(wr/(2*fs));

[Nb,wn]二buttord(w1,w2,rp,rs,'s')%巴特沃思

[B,A]=butter(Nb,wn,'s');

[num1,den1]=bilinear(B,A,fs);

[h1,w]=freqz(num1,den1);

[Nc,wn]=cheb1ord(w1,w2,rp,rs,'s')%切比雪夫

[B,A]=cheby1(Nc,rp,wn,'s');

[num2,den2]=bilinear(B,A,fs);

[h2,w]=freqz(num2,den2);

[Ne,wn]=ellipord(w1,w2,rp,rs,'s')%椭圆型

[B,A]=ellip(Ne,rp,rs,wn,'low','s');

[num3,den3]=bilinear(B,A,fs);

[h3,w]=freqz(num3,den3);

f=w/(2*pi)*fs;

plot(f,20*log10(abs(h1)),'-',f,20*log10(abs(h2)),'--',f,20*

Iog10(abs(h3)),':

');

axis([0,4000,-100,10]);grid;

xlabel('FrequencyinHz');ylabel('GainindB');

title('三种数字低通滤波器');

legend('巴特沃思数字低通滤波器','切比雪夫数字低通滤波器椭圆数字低通滤波器',3);

巴特沃思数字低通滤波器的系统函数系数:

num仁0.00320.01290.03020.04530.04530.0302

0.01290.00320.0003

den1=-2.79964.4581-4.54123.2404-1.6330

0.5780-0.13700.0197-0.0013

切比雪夫数字低通滤波器的系统函数系数:

num2=0.00260.01320.02640.02640.01320.0026

den2二1-2.97754.2932-3.51241.6145-0.3334

椭圆数字低通滤波器的系统函数系数:

num3=0.038870.03630.06650.03630.0389

den3二1-2.14442.3658-1.32500.3332

程序结果图:

分析:

设计结果表明,巴特沃思数字低通滤波器、切比雪夫数字低通滤波器、椭圆数字低通滤波器的阶数分别是9、5、4阶。

可见,对于给定的阶数,椭圆数字低通滤波器的阶数最少(换言之,对于给定的阶数,过渡带最窄),就这一点来说,他是最优滤波器。

由图表明,巴特沃思数字低通滤波器过渡带最宽,幅频响应单调下降;椭圆数字低通滤波器过渡带最窄,并具有等波纹的通带和阻带响应;切比雪夫数字低通滤波器的过渡带介于两者之间。

(4)分别用脉冲响应不变法及双线性变换法设计一Butterworth型数字带通滤波器,已知,其等效的模拟滤波器指标S<3dB,2kHzvf

<3kHz;At>5dB,f>6kHz;At>20dB,f<1.5kHz。

MATLA源程序:

wp1=2*pi*2000;wp2=2*pi*3000;

ws仁2*pi*1500;ws2=2*pi*6000;

[N1,wn1]=buttord([wp1wp2],[ws1ws2],3,20,'s');%求巴特

沃思滤波器的阶数

[B1,A1]=butter(N1,wn1,'s');%给定阶数和边界频率设计滤波器

[num1,den1]=impinvar(B1,A1,30000);%脉冲相应不变法

[h1,w]=freqz(num1,den1);

w1=2*30000*tan(2*pi*2000/(2*30000));

w2=2*30000*tan(2*pi*3000/(2*30000));

wr1=2*30000*tan(2*pi*1500/(2*30000));

wr2=2*30000*tan(2*pi*6000/(2*30000));

[N,wn]二buttord([w1w2],[wr1wr2],3,20,'s');%求巴特沃思滤波

器的阶数

[B,A]=butter(N,wn,'s');

[num,den]=bilinear(B,A,30000);%双线性变化法

[h2,w]=freqz(num,den);

f=w/(2*pi)*30000;

plot(f,20*log10(abs(h1)),'-.',f,20*log10(abs(h2)),'-');

axis([0,15000,-60,10]);

xlabel('FrequencyinHz');ylabel('GainindB');

grid;

title('巴特沃思数字带通滤波器');

legend('脉冲相应不变法','双线性变换法',1);

脉冲相应不变法设计的巴特沃思数字带通滤波器系统函数的分子、分

母多项式系数:

num仁-1.51580.0057-0.01220.00250.0089-0.0049

den1=1-4.805610.2376-12.26258.7012-3.4719

0.6145

双线性变换法设计的巴特沃思数字带通滤波器系统函数的分子、分母

多项式的系数:

num二0.00140-0.00427.10540.00425.7732-0.0014

den二1-4.807110.2473-12.28388.7245-3.48490.6176

(5)利用双线性变换法设计满足下列指标的Chebyshev型数字带阻

滤波器,并作图验证设计结果:

当1kHzf2kHz时,At18dB;当

f500Hz以及f3kHz时,3dB;采样频率fs10kHz。

MATLA源程序:

w1二2*10000*tan(2*pi*1000/(2*10000));

w2=2*10000*tan(2*pi*2000/(2*10000));

wr1=2*10000*tan(2*pi*500/(2*10000));

wr2=2*10000*tan(2*pi*3000/(2*10000));

[N,wn]=cheb1ord([wr1wr2],[w1w2],3,18,'s');%计算阶数

[B,A]=cheby1(N,3,wn,'stop','s');%给定阶数和参数设计滤波器

[num,den]=bilinear(BA10000);%双线性变化法

[h,w]=freqz(num,den);%频率响应f=w/(2*pi)*10000;

plot(f,20*log10(abs(h)));axis([0,5000,-120,10]);

grid;xlabel('频率/Hz');ylabel('幅度/dB')

title('切比雪夫数字带阻滤波器');

程序结果图:

四、实验思考题

1.双线性变换法中Q和3之间的关系是非线性的,在实验中你注

意到这种非线性关系了吗?

从哪几种数字滤波器的幅频特性曲线中

可以观察到这种非线性关系?

答:

在双线性变化法中,模拟频率与数字频率不再是线性关系,所以

一个线性相位模拟滤波器经双线性变换后,得到的数字滤波器不再保持原有的线性相位了,在每一幅使用了双线性变换的图中,可以看到在采样频率一半处,幅度为零,这显然不是线性变换能够产生的,这是由于双线性变换将模拟域中的无穷远点映射到了改点处。

2.能否利用公式完成脉冲响应不变法的数字滤波

4亍加h

器设计?

为什么?

答:

IIR数字滤波器的设计实际上是求解滤波器的系数ak,bk,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。

如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。

但是它的缺点是,存在频率混叠效应,故只适用于阻带的模拟滤波器。

五、实验总结

数字滤波器的设计是信号处理方面的重要内容,通过运用

MATLAB^件来设计IIR数字滤波器,使我熟悉了MATLA的强大功能,同时也对数字滤波器的特点、作用有更深入的理解。

了解了熟练的利用MATLA这一功能强大的软件来设计数字滤波器对数字信号处理这一领域有着重要的意义与价。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1