利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx

上传人:b****5 文档编号:4319356 上传时间:2022-11-29 格式:DOCX 页数:7 大小:91.08KB
下载 相关 举报
利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx_第1页
第1页 / 共7页
利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx_第2页
第2页 / 共7页
利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx_第3页
第3页 / 共7页
利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx_第4页
第4页 / 共7页
利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx

《利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx》由会员分享,可在线阅读,更多相关《利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx(7页珍藏版)》请在冰豆网上搜索。

利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计.docx

利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计

利用锁相环芯片实现FSK信号的调制与解调电路的毕业设计

 

1锁相环简介1

1.1引言1

1.2锁相环的结构1

2锁相环芯片简介2

2.1NE564介绍2

2.2CD4046介绍3

3FSK简介6

3.1FSK基本概念与特点6

3.2FSK的发展及应用前景7

4利用锁相环芯片实现FSK信号的调制8

4.1FSK信号调制的基本原理8

4.2利用NE564实现FSK信号调制电路的设计8

4.3利用CD4046实现FSK信号调制电路的设计9

5利用锁相环芯片实现FSK信号的解调10

6实验结果分析11

6.1利用锁相环芯片实现FSK信号调制和解调的结果分析11

6.2课题的主要研究工作及意义14

参考文献15

致谢16

利用锁相环芯片实现FSK信号的调制与解调电路的设计

摘要:

频移键控(FSK)操作方法简单,易于实现;在解调的过程中不须恢复本地载波,也可进行异步传输;并且抗噪声和抗衰落性能也都较强。

因此,频移键控(FSK)的调制与解调技术在通信行业中得到了广泛地应用,且主要适用于低、中速数据的传输。

本文主要介绍锁相环芯片NE564、CD4046和FSK信号的基本特点、工作原理和用途,并详细的阐述了利用锁相环芯片NE564和CD4046实现FSK信号的调制与解调工作的基本原理和主要设计过程。

在技术方面,主要介绍FSK调制与解调的相关原理和基本技术。

最后对整个实验设计过程进行总结分析,并深入探讨了课题的主要研究工作及意义,加深了对数字移频键控的调制与解调方法的理解;更加深入的学习了锁相环的设计原理,并加强了对锁相环的应用。

关键词:

锁相环;NE564;CD4046;FSK;调制;解调

UsingPLLChiptoAchieveFSKSignalModulationandDemodulationCircuitDesign

Abstract:

FrequencyshiftkeyingFSKoperationmethodissimple,easytoimplement;Intheprocessofdemodulation,neednottorestorethelocalcarriercanalsobeusedforasynchronoustransmission;Andantinoiseandfadingresistanceisstrong.Therefore,frequencyshiftkeyingFSKmodulationanddemodulationtechnologyhasbeenwidelyusedinthecommunicationsindustry,andismainlysuitableforlowandmediumspeeddatatransmission.NE564PLLchipwereintroducedinthispaper,CD4046andthebasiccharacteristicsofFSKsignal,theworkingprincipleandpurpose,andexpoundsindetailtheuseofNE564PLLchipCD4046andrealizethebasicprincipleofFSKsignalmodulationanddemodulationoftheworkandthemaindesignprocess.Intermsoftechnology,mainlyintroducestheFSKmodulationanddemodulationprincipleandbasictechnology.Finallytosummarizethewholeprocessofdesignofexperimentisanalyzed,anddiscussedthemainresearchworkandsignificanceoftopics,deepenedtheFSKdigitalmodulationanddemodulationwaysofunderstanding;Morein-depthstudy,thedesignprincipleofphase-lockedloop,andstrengthentheapplicationofphase-lockedloop.

Keywords:

Phase-lockedloop;NE564;CD4046;FSK;Modulation;Demodulation

1锁相环简介

1.1引言

随着现代社会的不断进步,电子计算机和电子科学技术不断地普及到我们的家庭中。

通信对我们来说也显得越来越至关重要,密不可分。

对于通信技术而言,通信的质量问题也就显的非常的关键。

在保证信息远距离传输正确性这一方面,数字通信系统拥有先天的优势,这也正是数据通信技术快速发展的真正原因。

数字频率调制是数据通信中一种常见的调制方式。

由于频移键控(FSK)的调制和解调原理都相对比较简单,作为数字通信原理的一门入门学科,透彻的理解频移键控(FSK)后可以更好地理解其他较复杂的调制系统,为以后的进一步发展打下坚实基础[1]。

锁相环(PLL)是一种闭环的自动跟踪负反馈系统。

60年代初随着数字通信系统的发展,锁相环的应用也越来越广。

在电子仪器方面,锁相环在频率合成器和相位计等仪器中起了重要作用。

锁相环路之所以能得到如此广泛的应用,是由于其独特的优良性能所决定的。

它具有载波跟踪特性,作为一个窄带跟踪滤波器,可提取淹没在噪声中的信号;用高稳定的参考振荡器锁定,可提供频率高稳定的频率源;可进行高精度的香味与频率测量等等。

它具有调制跟踪特性,可制成高性能的调制器和解调器。

它还具有低门限特性,可大大改善模拟信号和数字信号的解调质量[2]。

对于不同的调制方式,还有其不同的独特的解调方法。

在本实验中主要利用了锁相环的特性,实现了基于锁相环的数字信号移频键控的调制与解调。

1.2锁相环的结构

锁相的意义是相位同步的自动控制,能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。

它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域[3]。

锁相环主要由相位比较器(PC)、压控振荡器(VCO)、低通滤波器三部分组成,如图1-1所示。

图1-1锁相环结构图

图中的压控振荡器的输出接至相位比较器的一个输入端,其输出频率的高低由低通滤波器上建立起来的平均电压的大小决定。

施加于相位比较器另一个输入端的外部输入信号与来自压控振荡器的输出信号相比较,比较结果产生的误差输出电压正比于和两个信号的相位差,经过低通滤波器滤除高频分量后,得到一个平均值电压。

这个平均值电压朝着减小VCO输出频率和输入频率之差的方向变化,直至VCO输出频率和输入信号频率获得一致。

这时两个信号的频率相同,两相位差保持恒定(即同步)称作相位锁定。

2锁相环芯片简介

2.1NE564介绍

高频模拟锁相环NE564是PhilipsSemiconductor公司(荷兰菲利浦公司)的产品,同类国产产品的型号有XD564、L564等。

NE564最高工作频率可达到50MHZ,采用+5V单电源供电,特别适用于高速数字通信中FM调频信号及2FSK移频键控信号的调制、解调,而无需外接复杂的滤波器。

NE564采用双极性工艺,其外部引脚图和内部组成框图分别如图2-1和图2-2所示。

其中,为限幅器,可抑制FM调频信号的寄生调幅;相位比较器(鉴相器)PD的内部含有限幅放大器,以提高对AM调幅信号的抗干扰能力;外接电容、组成低通滤波器,用来滤出比较器输出的直流误差电压的波纹;改变引脚的输入2电流可改变环路增益;压控振荡器VCO的内部接有固定电阻R(R100),只需外接一个定时电容就可产生振荡。

VCO有两个电压输出端,其中输出TTL电平,输出ECL电平。

后置鉴相器由单位增益跨导放大器和施密特触发器ST组成。

其中,提供解调FSK信号时的补偿直流电平及用作线性解调FM信号时的后置鉴相滤波器;ST的回差电压可通过引脚16外接直流电压进行调整,以消除输出信号的相位抖动[4]。

图2-1NE564的外部引脚图

图2-2NE564的内部组成框图

2.2CD4046介绍

锁相环过去多采用分立元件和模拟电路组成,现在常使用集成电路的锁相环,CD4046便是常用的锁相环集成电路[5]。

CD4046锁相环采用的是RC型压控振荡器,必须外接电容C1和电阻R1作为充放电元件,当PLL对跟踪的输入信号的频率宽度有要求时还需要外接电阻R2。

其特点是电源电压范围宽为3V-18V,输入阻抗高约100,动态功耗小,在中心频率f0为10kHz下功耗仅为600μW,属微功耗器件。

图2-3是CD4046的引脚排列,采用16脚双列直插式,各引脚功能如下:

1脚相位输出端,环路人锁时为高电平,环路失锁时为低电平。

2脚相位比较Ⅰ的输出端。

3脚比较信号输入端。

4脚压控振荡器输出端。

5脚禁止端,高电平时禁止,低电平时允许压控振荡器工作。

6、7脚外接振荡电容。

8、16脚电源的负端和正端。

9脚压控振荡器的控制端。

10脚解调输出端,用于FM解调。

11、12脚外接振荡电阻。

13脚相位比较器Ⅱ的输出端。

14脚信号输入端。

15脚内部独立的齐纳稳压管负极。

图2-3CD4046的外部引脚图

图2-4CD4046的内部电原理框图

图2-4是CD4046内部电原理框图,它主要由相位比较Ⅰ、相位比较器Ⅱ、压控振荡器(VCO)、源跟随器、线性放大器、整形电路等部分组成。

相位比较器Ⅰ采用异或门结构,当两个输人端信号、的电平状态不同时(即一个高电平,一个为低电平),输出端信号为高电平;反之,当、的电平状态相同时(即两个均为高,或均为低电平),输出为低电平。

当、的相位差Δφ变化在0°-180°的范围内时,的脉冲宽度m也随之改变,即占空比亦在改变。

从比较器Ⅰ的输入和输出信号的波形(如图2-5所示)可看出,其输出信号的频率是输入信号频率的两倍,并且与两个输入信号之间的中心频率保持90°的相位移动。

对相位比较器Ⅰ而言,它要求、的占空比均为50%(即方波),这样才能使锁定的范围为最大。

图2-5比较器Ⅰ的输入和输出信号的波形

相位比较器Ⅱ是一个由信号的上升沿控制的数字存储网络。

它对输入信号占空比的要求不高,并允许输入非对称的波形,它具有很宽很广的捕捉频率范围,而且不会锁定在输入信号的谐波上。

它可提供数字误差信号和锁定信号(相位脉冲)两种输出,当达到锁定时,在相位比较器Ⅱ的两个输人信号之间保持0°相位移动。

对相位比较器Ⅱ而言,当14脚的输入信号比13脚的比较信号频率低时,输出为逻辑“0”;反之则输出逻辑“1”。

如果两个信号的频率相同而相位不同,当输人信号的相位滞后于比较信号时,相位比较器Ⅱ输出的为正脉冲,当相位超前时则输出的为负脉冲。

在这两种情况下,从1脚都会有与上述正、负脉冲宽度相同的负脉冲产生。

相位比较器Ⅱ会输出一个与两输入脉冲上升沿之间相位差相等宽度的正负脉冲。

而当两个输入脉冲的频率和相位都一致时,相位比较器Ⅱ的输出为高阻态,则1脚输出为。

图2-6为上述所示波形。

由此可见,从1脚输出信号是负脉冲还是固定的高电平高电平就可以判断出两个输入信号的情况了。

图2-6输入信号情况判断

CD4046内部的线性放大器和整形电路,可将14脚输入的100mV左右的微弱输入信号变成方波或脉冲信号送至两相位比较器。

源跟踪器是增益为1的放大器,VCO的输出电压经源跟踪器至10脚作FM解调用。

齐纳二极管可单独使用,其稳压值为5V,若与TTL电路匹配时,可用作辅助电源。

综上所述,CD4046工作原理如下:

输入信号从14脚输入后,经放大器A1进行放大、整形后加到相位比较器Ⅰ、Ⅱ的输入端,图2-4开关K拨至2脚,则比较器Ⅰ将从3脚输入的比较信号与输入信号作相位比较,从相位比较器输出的误差电压则反映出两者的相位差。

经R3、R4及C2滤波后得到一控制电压加至压控振荡器VCO的输入端9脚,调整VCO的振荡频率f2,使f2迅速逼近信号频率f1。

VCO的输出又经除法器再进入相位比较器Ⅰ,继续与进行相位比较,最后使得f2=f1,两者的相位差为一定值,实现了相位锁定。

若开关K拨至13脚,则相位比较器Ⅱ工作,过程与上述相同,不再赘述[6]。

3FSK简介

3.1FSK基本概念与特点

数字调制是指用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过程。

在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调。

利用数字信号的离散取值特点通过开关键控载波,实现数字调制的技术称为键控法。

数字频率调制又称频移键控FSK―FrequencyShiftKeying,二进制频移键控记作2FSK。

它是键控法的一种,是利用载波的频率变化来传送数字信息,即用所传送的数字信息来控制载波的频率。

2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的[7]。

从原理上讲,数字调频可用模拟调频法来实现,也可用键控法来实现。

模拟调频法是利用一个矩形脉冲序列对一个载波进行调频,是频移键控通信方式早期采用的实现方法。

而键控法则是利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通,它是信息传输中使用得较早的一种调制方式,它的主要优点是:

实现起来较为容易、抗干扰能力强、传输距离远、转换速度快、波形好、稳定度高且抗噪声与抗衰减的性能较好,故在中低速数据传输通信系统中得到了较为广泛的应用。

2FSK信号的表达式和波形图如下所示:

在2FSK信号中,载波的频率随二进制基带信号在和两个频率点间变化。

故其表达式为:

式3-1

假设二进制序列s(t)为l01001时,则2FSK信号的波形如图3-1所示:

图3-12FSK信号的波形

从图中可以看出,一个2FSK信号可以看成是两个不同载频的2ASK信号的叠加。

因此,2FSK信号的时域表达式又可写成:

式3-2

式中:

gt为单个矩形脉冲,脉宽为;

式3-3

是的反码,若1,则0;若0,则1,于是

式3-4

和分别是第n个信号码元的初相位。

在移频键控中,和不携带信息,通常可令和为零。

3.2FSK的发展及应用前景

1)FSKModemMSM7512B在电力线通信中的应用:

MSM7512B是由OKI公司推出的关于FSK调制解调的芯片。

电力线作为一种通信传输介质,具有可变信号衰减、阻抗调制、脉冲噪声以及等幅振荡波干扰等不利数据传输的特性。

为了排除这些干扰,目前利用电力线进行通信的产品有很多,通信质量和距离各有差异。

这里介绍的是利用FSK调制解调芯片MSM7512B来实现的一种点对点通信方式。

这种传输方法是隔离(变压器隔离方式)的。

当通信距离较远时,可用MSM7512B替代隔离的RS-485接口芯片。

它具有抗干扰能力强、误码率低、可靠性高、投资少、建设方便等优点,同时也存在着数据传输速度低(只能达到1200bps),在通信距离变得很远时误码率有所增高的缺点。

这种基于MSM7512B来实现电力线通信已经在智能小区数据通信的实践应用中取得了良好的使用效果。

2)来电显示:

来电显示的传输信息的方式有2种:

FSK和DTMF。

FSK方式与DTMF方式相比有如下的优势:

(l)数据传输速率高,在规定时间内能传的字符数较多;

(2)FSK方式可以支持ASCII字符集,而DTMF方式只能支持数字及少数字符。

目前采用FSK方式的国家和地区有:

美国、中国、英国、加拿大、日本、西班牙、新加坡等;采用DTMF方式的则主要是以瑞典为代表的一些欧洲国家等。

3)蓝牙Bluetooth通信设备:

蓝牙Bluetooth是应用FSK调制解调的一个重要领域之一。

蓝牙可替代短距离线缆,实现在移动电话、便携式电脑和其他电子装置间的无缝线连接。

越来越多的旅馆、邮局、高尔夫球场、飞机场、商场、会议中心和商业领域都在采用蓝牙技术[5]。

4利用锁相环芯片实现FSK信号的调制

4.1FSK信号调制的基本原理

数字调频信号可以分为两种情况,即相位连续和相位离散。

如果两个振荡频率分别由不同的独立振荡器提供,则它们之间相位互不相关,称它为相位离散的数字调频信号;如果两个振荡频率由同一振荡信号源提供,只是将其中一个载频进行分频,这样产生的两个载频就是相位连续的数字调频信号。

FSK调制原理框图如图4-1所示:

图4-1FSK调制原理框图

4.2利用NE564实现FSK信号调制电路的设计

如下图是由NE564等构成的FSK电路。

在电路中,NE564是一种模拟锁相环PLL集成电路,用双态信号控制CD4016模拟开关进行FSK调制。

CD4016使NE564的2脚电压之间转换,即5Vx[R2/R1十R2]1.42V。

因此,在相位连续的情况下,可改变压控振荡器VCO的输出。

VCO中心频率的电容C0固定不变,FSK频率之间偏移可通过R1和R2进行调整。

--

-

2

1

1

1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 卡通动漫

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1