tdscdma室内覆盖系统规划设计.docx
《tdscdma室内覆盖系统规划设计.docx》由会员分享,可在线阅读,更多相关《tdscdma室内覆盖系统规划设计.docx(37页珍藏版)》请在冰豆网上搜索。
tdscdma室内覆盖系统规划设计
摘要
3G的魅力在于高速数据与多媒体业务,而视频电话、视频流、游戏等高速数据业务一般都发生在舒适的室内环境中,这些业务功能都需要较大的系统容量和良好的网络质量。
3G时代60%~70%的数据业务将发生在室内,欧美国家和中国香港地区的统计显示室内移动电话话务量约占总话务量的1/3;日本NTTDoCoMo公司的调查发现3G用户的室内使用量占到了70%,而室外使用量只有30%。
对运营商而言,大量使用室内覆盖系统,可以争夺室内的话务量。
NTTDoCoMo公司统计,实施室内覆盖的建筑物内话务量增大了1.43倍。
室内覆盖还可以用于分散过密地区的网络压力,解决高端用户密集城区覆盖问题,减少室外基站的数量和配置,降低室外网络的整体干扰水平,从而提高整个系统的容量,更好地满足用户对质量的要求,其性能的好坏将直接影响到运营商的客户体验及收益,是其取得成功的关键因素之一。
解决室内覆盖的主要方法是建设室内覆盖分布系统,室内分布系统的基本原理是将室外信号通过有线方式引入到室内,再通过小型天线将信号发送出去,从而提高室内覆盖水平。
TD-SCDMA是3G三大主流技术之一,TD-SCDMA室内分布系统将是TD-SCDMA整个网络建设的重点之一。
本文将从一些工程经验出发,分析TD-SCDMA室内分布系统设计的特点,并总结出一些方法和技巧。
关键词:
3G;TD-SCDMA;室内覆盖
Abstract
3Gisthecharmofhigh-speeddataandmultimediaservices,andvideotelephony,videostreaming,gamingandotherhigh-speeddataservicesareusuallyoccurredinacomfortableindoorenvironment,thesebusinessfunctionsrequirealargenetworkofsystemcapacityandgoodquality.3Gera60%to70%ofthedataserviceswilltakeplaceindoors,EuropeandtheUnitedStatesandChina,HongKong'sstatisticsshowthatthetotalindoormobiletelephonetraffictelephonetrafficabout1/3;Japan'sNTTDoCoMo's3Gusersurveyindooruseaccountedfor70%,whileonly30%ofoutdooruse.Oftheoperators,extensiveuseofindoorcoveragesystem,Cancompetefortheindoortelephonetraffic.NTTDoCoMo,Inc.,theimplementationoftelephonetrafficwithinthebuildingindoorcoverageincreased1.43times.Indoorcoveragecanalsobeusedtodispersethepressureoverthenetworkdensityareas,denseurbansettlementcoveringhigh-endusers,reducethenumberofoutdoorbasestationsandconfiguredtoreducetheoverallinterferenceleveloutsidethenetwork,therebyenhancingthecapacityoftheentiresystemtobettermeetuserqualityrequirements,theperformanceisgoodorbadwillhaveadirectimpactontheoperator'scustomerexperienceandrevenue,isthekeyfactorforsuccess.
Themainwaytosolveindoorcoverageistobuildindoorcoveragedistributionsystem,thebasicprinciplesofindoordistributionsystemistooutdoorsignalthroughwireintroducedintotheroom,thenthroughasmallantennatosendoutthesignalsoastoenhancethelevelofindoorcoverage.TD-SCDMAisoneofthethree3Gmainstreamtechnology,TD-SCDMAindoordistributionsystem,TD-SCDMAwillbeoneofthemajorconstructionoftheentirenetwork.Someworksfromthisexperience,analysisofTD-SCDMAindoordistributionsystemdesignfeatures,andsummarizesomeofthemethodsandtechniques.
Keywords:
3G;TD-SCDMA;Indoorcoverage
第1章绪论
1.13G网络室内覆盖系统的重要性
随着移动通信的迅速发展和普及,城市规模的不断扩大,摩天大楼和地下设施的大量涌现,室内吸收了大部分的话务量。
NTTDoCoMo的3G商用网络的最新业务统计数据显示(图1-1),在3G网络中室外的业务量(语音和数据)仅占整个网络业务的30.3%,而室内业务占整个网络业务的69.7%,这些场所主要是办公楼、车站和家庭等(图1-2)。
图1-1商用网络用户统计分析
图1-2室内话务量明细
针对现在许多大城市高楼密集和建筑物内的移动用户较多的现状,单依靠室外宏蜂窝基站对其覆盖已经不能满足网络覆盖、容量和质量的要求。
主要存在以下一些问题。
覆盖方面:
3G工作在超短波频段,而且电波的绕射能力差,穿透损耗较大,导致网络的深层次覆盖存在着缺陷,产生信号的弱区或盲区,如在建筑物电梯间、地下停车场和地铁等。
容量方面:
一些建筑物如超市、会议中心等,由于用户密度过大,CDMA网络用户底部噪声大大抬高,GSM拥塞严重,导致容量有限。
质量方面:
由于频率干扰、导频污染和乒乓效应等导致小区的信号不稳定,话音质量难以保证,甚至发生掉话。
对运营商而言,大量使用室内覆盖系统,可以争夺室内的话务量,开拓新的话务量。
据DoCoMo的统计,实施室内覆盖的建筑物内话务量增大了1.43倍。
同时室内覆盖还可以用于分散过密地区的网络压力,解决高端用户密集城区覆盖问题,减少室外基站的数量和配置,降低室外网络的整体干扰水平,从而提高整个系统的容量,更好地满足用户对质量的要求,其性能的好坏将直接影响到运营商的客户体验及其收益,是其取得成功的关键因素之一。
与3G其他制式的系统一样,TD-SCDMA在布网的过程中也无法回避室内覆盖的问题。
同样受限于IMT-2000频段无线电波的传播特性和建筑物的材质,仅仅室外的宏蜂窝基站无法保证充分覆盖,不可避免产生盲区。
解决问题的最有效方法是引入室内分布系统。
1.2TD-SCDMA简介
TD-SCDMA,TimeDivision-SynchronousCodeDivisionMultipleAccess,即时分同步的码分多址技术,是ITU正式发布的第三代移动通信空间接口技术规范之一,它得到了CWTS及3GPP的全面支持。
TD-SCDMA集CDMA、TDMA、FDMA技术优势于一体、系统容量大、频谱利用率高、抗干扰能力强的移动通信技术。
它采用了智能天线、联合检测、接力切换、同步CDMA、软件无线电、低码片速率、多时隙、可变扩频系统、自适应功率调整等技术。
TD-SCDMA为TDD模式,在应用范围内有其自身的特点:
一是终端的移动速度受现有DSP运算速度的限制只能做到240km/h;二是基站覆盖半径在15km以内时频谱利用率和系统容量可达最佳,在用户容量不是很大的区域,基站最大覆盖可达30-40km。
所以,TD-SCDMA适合在城市和城郊使用,在城市和城郊这两个不足均不影响实际使用。
因在城市和城郊,车速一般都小于200km/h,城市和城郊人口密度高,因容量的原因,小区半径一般都在15km以内。
而在农村及大区全覆盖时,用WCDMAFDD方式也是合适的,因此TDD和FDD模式是互为补充的。
TDD模式是基于在无线信道时域里的周期地重复TDMA帧结构实现的。
这个帧结构被再分为几个时隙。
在TDD模式下,可以方便地实现上/下行链路间地灵活切换。
这一模式的突出的优势是,在上/下行链路间的时隙分配可以被一个灵活的转换点改变,以满足不同的业务要求。
这样,运用TD-SCDMA这一技术,通过灵活地改变上/下行链路的转换点就可以实现所有3G对称和非对称业务。
合适的TD-SCDMA时域操作模式可自行解决所有对称和非对称业务以及任何混合业务的上/下行链路资源分配的问题。
TD-SCDMA的无线传输方案综合了FDMA,TDMA和CDMA等基本传输方法。
通过与联合检测相结合,它在传输容量方面表现非凡。
通过引进智能天线,容量还可以进一步提高。
智能天线凭借其定向性降低了小区间频率复用所产生的干扰,并通过更高的频率复用率来提供更高的话务量。
基于高度的业务灵活性,TD-SCDMA无线网络可以通过无线网络控制器(RNC)连接到交换网络,如同三代移动通信中对电路和包交换业务所定义的那样。
在最终的版本里,计划让TD-SCDMA无线网络与INTERNET直接相连。
TD-SCDMA所呈现的先进的移动无线系统是针对所有无线环境下对称和非对称的3G业务所设计的,它运行在不成对的射频频谱上。
TD-SCDMA传输方向的时域自适应资源分配可取得独立于对称业务负载关系的频谱分配的最佳利用率。
因此,TD-SCDMA通过最佳自适应资源的分配和最佳频谱效率,可支持速率从8kbps到2Mbps的语音、互联网等所有的3G业务。
根据ITU的要求和原邮电部的准备,我国于1998年6月底向国际电联提交了我国对IMT2000无线传输技术(RTT)的建议(TD-SCDMA)。
2000年5月5日,国际电联正式公布了第三代移动通信标准,我国提交的TD-SCDMA已正式成为ITU第三代移动通信标准IMT2000建议的一个组成部分。
我国自主知识产权的TD-SCDMA、欧洲WCDMA和美国CDMA2000成为3G时代最主流的技术。
1.2.1TD-SCDMA网络试验和商用概况
2006年,罗马尼亚建成了TD-SCDMA试验网。
2007年,韩国最大的移动通信运营商SK电讯在韩国首都首尔建成了TD-SCDMA试验网。
同年,欧洲第二大电信运营商法国电信建成了TD-SCDMA试验网。
2007年10月,日本电信运营商IPMobile原本计划建设并运营TD-SCDMA网络,但该公司最终受限于资金困境而破产。
2008年1月,中国移动在中国北京、上海、天津、沈阳、广州、深圳、厦门、秦皇岛市建成了TD-SCDMA试验网;中国电信集团公司在中国保定市建成了TD-SCDMA试验网;原中国网络通信公司(现中国联合网络通信集团有限公司)在中国青岛市建成了TD-SCDMA试验网。
2008年4月1日,中国移动在中国北京、上海、天津、沈阳、青岛、广州、深圳、厦门、秦皇岛和保定等10个城市启动TD-SCDMA社会化业务测试和试商用。
截止2008年年末,在中国使用TD-SCDMA网络的3G手机用户已达到41.9万人。
但是TD-SCDMA手机放号首日即出现诸多问题,如网络建设尚未完善、功能尚未全部开发等,因而不少手机用户仍然持观望态度。
2008年9月,中国普天信息产业集团公司为意大利的一家通信公司MYWAVE建设了TD-SCDMA试验网,该网络于9月12日建成并开通;从建设工程仅为11天推算,应为小型企业网。
2009年1月7日,中国政府正式向中国移动颁发了TD-SCDMA业务的经营许可,中国移动也已经开始在中国的28个直辖市、省会城市和计划单列市进行TD-SCDMA的二期网络建设,预计于2009年6月建成并投入商业化运营。
该公司计划到2011年,TD-SCDMA网络能够覆盖中国大陆100%的地市。
TD-SCDMA的发展过程1998年初,在当时的邮电部科技司的直接领导下,由电信科学技术研究院组织队伍在SCDMA技术的基础上,研究和起草符合IMT-2000要求的我国的TD-SCDMA建议草案。
该标准草案以智能天线、同步码分多址、接力切换、时分双工为主要特点,于ITU征集IMT-2000第三代移动通信无线传输技术候选方案的截止日1998年6月30日提交到ITU,从而成为IMT-2000的15个候选方案之一。
ITU综合了各评估组的评估结果,在1999年11月赫尔辛基ITU-RTG8/1第18次会议上和2000年5月在伊斯坦布尔的ITU-R全会上,TD-SCDMA被正式接纳为CDMATDD制式的方案之一。
CWTS(中国无线通信标准研究组)作为代表中国的区域性标准化组织,从1999年5月加入3GPP以后,经过4个月的充分准备,并与3GPPPCG(项目协调组)、TSG(技术规范组)进行了大量协调工作后,在同年9月向3GPP建议将TD-SCDMA纳入3GPP标准规范的工作内容。
1999年12月在法国尼斯的3GPP会议上,我国的提案被3GPPTSGRAN(无线接入网)全会所接受,正式确定将TD-SCDMA纳入到Release2000(后拆分为R4和R5)的工作计划中,并将TD-SCDMA简称为LCRTDD(低码片速率TDD方案)。
经过一年多的时间,经历了几十次工作组会议几百篇提交文稿的讨论,在2001年3月棕榈泉的RAN全会上,随着包含TD-SCDMA标准在内的3GPPR4版本规范的正式发布,TD-SCDMA在3GPP中的融合工作达到了第一个目标。
至此,TD-SCDMA不论在形式上还是在实质上,都已在国际上被广大运营商、设备制造商所认可和接受,形成了真正的国际标准。
1.2.2TD-SCDMA标准的现状
自2001年3月3GPPR4发布后,TD-SCDMA标准规范的实质性工作主要在3GPP体系下完成。
在R4标准发布之后的两年多时间里,大唐与其他众多的业界运营商、设备制造商一起,又经过无数次会议讨论、邮件组讨论,通过提交的大量文稿,对TD-SCDMA标准规范的物理层处理、高层协议栈消息、网络和接口信令消息、射频指标和参数、一致性测试等部分的内容进行了一次次的修订和完善,使得到目前为止的TD-SCDMAR4规范达到了相当稳定和成熟的程度。
在3GPP的体系框架下,经过融合完善后,由于双工方式的差别,TD-SCDMA的所有技术特点和优势得以在空中接口的物理层体现。
物理层技术的差别是TD-SCDMA与WCDMA最主要的差别所在。
在核心网方面,TD-SCDMA与WCDMA采用完全相同的标准规范,包括核心网与无线接入网之间采用相同的lu接口;在空中接口高层协议栈上,TD-SCDMA与WCDMA二者也完全相同。
这些共同之处保证了两个系统之间的无缝漫游、切换、业务支持的一致性、QoS的保证等,也保证了TD-SCDMA和WCDMA在标准技术的后续发展上保持相当的一致性。
2006年1月20日已经被宣布为中国的国家通信标准.(注:
说法不确切。
1月20日国家信息产业部规定为行业标准,而非国家的通信标准)
1.2.3TD-SCDMA标准的后续发展
在3G技术和系统蓬勃发展之际,不论是各个设备制造商、运营商,还是各个研究机构、政府、ITU,都已经开始对3G以后的技术发展方向展开研究。
在ITU认定的几个技术发展方向中,包含了智能天线技术和TDD时分双工技术,认为这两种技术都是以后技术发展的趋势,而智能天线和TDD时分双工这两项技术,在目前的TD-SCDMA标准体系中已经得到了很好的体现和应用,从这一点中,也能够看到TD-SCDMA标准的技术有相当的发展前途。
另外,在R4之后的3GPP版本发布中,TD-SCDMA标准也不同程度地引入了新的技术特性,用以进一步提高系统的性能,其中主要包括:
通过空中接口实现基站之间的同步,作为基站同步的另一个备用方案,尤其适用于紧急情况下对于通信网可靠性的保证;终端定位功能,可以通过智能天线,利用信号到达角对终端用户位置定位,以便更好地提供基于位置的服务;高速下行分组接入,采用混合自动重传、自适应调制编码,实现高速率下行分组业务支持;多天线输入输出技术(MIMO),采用基站和终端多天线技术和信号处理,提高无线系统性能;上行增强技术,采用自适应调制和编码、混合ARQ技术、对专用/共享资源的快速分配以及相应的物理层和高层信令支持的机制,增强上行信道和业务能力。
在政府和运营商的全力支持下,TD-SCDMA产业联盟和产业链已基本建立起来,产品的开发也得到进一步的推动,越来越多的设备制造商纷纷投入到TD-SCDMA产品的开发阵营中来。
随着设备开发、现场试验的大规模开展,TD-SCDMA标准也必将得到进一步的验证和加强。
为了加快TD-SCDMA的产业化进程,早日形成完整的产业链和多厂家供货环境,2002年10月30日,TD-SCDMA产业联盟在北京成立。
TD-SCDMA产业联盟的成员企业由最初的7家,发展到目前的30家企业,覆盖了TD-SCDMA产业链从系统、芯片、终端到测试仪表的各个环节。
第2章TD-SCDMA室内覆盖系统的组成
室内分布系统即针对建筑物内的移动用户,解决其通信网络覆盖的一种方案。
利用室内分布系统将基站信号均匀地覆盖到室内盲区,以保证室内区域都拥有理想的信号覆盖。
图2-1是通过无线同频直放站引入信号源,再由耦合器、功分器、干线放大器、室内分布式天线等组成的室内分布系统的示意图。
图2-1直放站的室内分布系统示意图
室内分布系统主要由信号源,信号的传输和分布系统以及干线放大器、功分器、耦合器、室内天线等部分组成。
按照信号源的不同可以分为宏蜂窝、微蜂窝、直放站、射频拉远等。
传输介质有光纤、同轴电缆和泄漏电缆等。
同时设备又分为有源设备和无源设备;天线分为全向天线和定向天线等。
TD-SCDMA的室内分布系统结构与传统的分布系统类似,主要由三部分组成:
信号源,传输和分布系统,元器件和天线。
TD-SCDMA的室内分布系统可以与其他系统共享相同的单元。
由于室内传播环境和工程上的考虑,智能天线并未引入到室内分布系统的覆盖中。
在TD-SCDMA的室内分布系统的设计和建设过程中,应该根据覆盖的目标、服务的类型、工程成本等方面的要求综合考虑,选取适当的信号源、元器件和传输介质等。
2.1信号源
通常可以选作为室内覆盖的信号源有宏蜂窝基站,微蜂窝基站,直放站和射频拉远单元等。
(1)宏蜂窝基站直接采用室外的宏蜂窝基站作为信号源。
在密集城区为了深度覆盖而采用该方式时,需要留出15dB~20dB的穿透损耗余量,这部分的余量直接导致小区的半径缩小,站点数量增加。
但是即便如此,室内覆盖的效果仍然较差,存在大量的覆盖盲区,另外严重的导频污染使用户接收多个强干扰,3G业务在室内达不到预期的使用效果。
最重要的是其网络容量有限,接通率低。
基站的发射功率很大一部分消耗在穿透损耗上,影响了系统的容量。
它适用于建筑物的电磁密闭性较差或建筑物较为稀疏而且话务量较低的场景。
(2)微蜂窝基站采用独立的微蜂窝基站作为信号源,可以独立承载话务量,并且可以分担宏蜂窝小区的话务量。
该方式虽然需要传输和供电设备,但是实施简单,无需机房资源,更重要的是能够提供更多的网络资源,信号稳定干净,抑制导频污染,可以灵活结合具体室内分布系统来实现室内覆盖。
因此,该方式通常应用于面积较大或者人流比较大、话务量比较高的室内覆盖,如大型购物广场、候机厅等,但是建设的成本比较高。
(3)直放站采用直放站作为信号源,分为空间直放站和光纤直放站两种。
它只是通过直放站收发系统将室外的宏基站的信号引入到室内,共享基站的基带处理能力,并不增加系统的容量,适合在话务量不高的室内环境中。
稳定、信号质量好的信号源,可以使用空间直放站作为信号源,但是易受到周围的无线环境影响及宏基站的稳定性限制。
相比之下光纤直放站能够解决以上的问题,但要受到光纤条件限制。
直放站的优点是投资省、安装方便快捷,可以很快地解决信号弱和盲区问题。
缺点是通过定向天线难以取得单一纯净的信号,系统的话音质量相对于蜂窝系统较差,且易造成对其他基站的干扰。
直放站作为一种实现无线覆盖的辅助技术手段可以利用较少的投资和较短的周期,迅速扩大无线覆盖范围和解决盲区覆盖。
对于TD-SCDMA系统,由于采用TDD模式上下行处于同一个频点的不同时隙,所以对其的发射端和接收端的隔离度、上下行发射的定时、与室外基站的同步方面有较高的要求。
直放站在放大转发上行信号过程中会增加信号的传输时延,对于信号质量有可能产生负面影响。
对于TD-SCDMA系统中直放站的使用有待进一步研究。
(4)射频拉远单元(RRU)该方式可以提供接近微蜂窝基站作为信号源的覆盖效果,即将基站中的射频部分取出通过光纤与基站中的数字基带部分相连,剩下的控制加基带部分被称为支持远端模块的“宿主基站”。
远端模块共享宿主基站的基带资源。
RRU避免了直放站信号的简单重复放大,且不像直放站仅改变原有扇区的覆盖拓扑,而是占用一定的基带资源提供容量服务,不会产生直放站的接收底噪抬升以至饱和自激的问题。
优点在于建设的成本较低,无需严格的机房和建站条件,可以灵活地结合具体的室内覆盖系统,并且配置和实施十分灵活。
缺点是要仔细核算基站的基带所能承载的处理能力,同时远端无线接入设备需要独立的传输和供电设备。
对于TD-SCDMA系统,射频电缆在2GHz以上频段的损耗比较大,拉远距离短,一般在60m左右;且射频电缆数量多,也相应带动其他辅材数量的增加,给基站成本很大压力;而射频拉远技术在降低馈线损耗和电缆数量及安装难度控制等方面面临着极大的困难,导致了建设成本偏高的后果。
TD-SCDMA网络中每个宏峰窝基站(一套天线)的覆盖半径只能有1~3km,在城市内高楼林立的地区覆盖半径还要小得多,为实现完好的覆盖,就必须架设大量的基站。
TD-SCDMA系统中,采用中频拉远方案就可以很好地解决上述问题,即将无线基站中的模拟射频收发部分与无线基站的基带数字信号处理部分在模拟中频处分开,形成远端射频前端设备与室内单元。
中频拉远技术通过基站室内单元的模拟中频接口,将射频的收发信机拉远至天线附近。
下行方向将中频信号传输到射频前端,经混频后转换为射频信号,再由天线发射;上行方向将从天线发射过来的射频信号在前端混频为中频信号,通过中频传输系统传回到基站室内单元。
远端射频前端设备与室内单元间可以用有线和无线传输手段相连接。
其介质可以是中频电缆、光纤等。
与