和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx

上传人:b****4 文档编号:3993877 上传时间:2022-11-27 格式:DOCX 页数:8 大小:19.38KB
下载 相关 举报
和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx_第1页
第1页 / 共8页
和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx_第2页
第2页 / 共8页
和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx_第3页
第3页 / 共8页
和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx_第4页
第4页 / 共8页
和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx

《和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx》由会员分享,可在线阅读,更多相关《和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx(8页珍藏版)》请在冰豆网上搜索。

和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容.docx

和倍差倍和差倍比及较复杂的和差倍问题专项训练教学内容

 

和倍差倍和差倍比及较复杂的和差倍问题专项训练

【和倍问题含义】

已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】

总和÷(几倍+1)=较小的数

总和—较小的数=较大的数

较小的数×几倍=较大的数

【解题思路和方法】

简单的题目直接利用公式,复杂的题目变通后利用公式。

例1.果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

(1)杏树有多少棵?

248÷(3+1)=62(棵)

(2)桃树有多少棵?

62×3=186(棵)

答:

杏树有62棵,桃树有186棵。

例2.东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?

(1)西库存粮数=480÷(1.4+1)=200(吨)

(2)东库存粮数=480—200=280(吨)

答:

东库存粮280吨,西库存粮200吨。

例3.甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?

每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28——24)辆。

把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,

那么,几天以后甲站的车辆数减少为

(52+32)÷(2+1)=28(辆)

所求天数为(52—28)÷(28—24)=6(天)

答:

6天以后乙站车辆数是甲站的2倍。

例4.甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?

乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;

又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;

这时(170+4—6)就相当于(1+2+3)倍。

那么,

甲数=(170+4—6)÷(1+2+3)=28

乙数=28×2—4=52

丙数=28×3+6=90

答:

甲数是28,乙数是52,丙数是90。

【差倍问题含义】

已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】

两个数的差÷(几倍-1)=较小的数

较小的数×几倍=较大的数

【解题思路和方法】

简单的题目直接利用公式,复杂的题目变通后利用公式。

例1

果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。

求杏树、桃树各多少棵?

(1)杏树有多少棵?

124÷(3—1)=62(棵)

(2)桃树有多少棵?

62×3=186(棵)

答:

果园里杏树是62棵,桃树是186棵。

例2

爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?

(1)儿子年龄=27÷(4—1)=9(岁)

(2)爸爸年龄=9×4=36(岁)

答:

父子二人今年的年龄分别是36岁和9岁。

例3

商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?

如果把上月盈利作为1倍量,则(30—12)万元就相当于上月盈利的(2—1)倍,因此

上月盈利=(30—12)÷(2—1)=18(万元)

本月盈利=18+30=48(万元)

答:

上月盈利是18万元,本月盈利是48万元。

例4

粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?

由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138—94)。

把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138—94)就相当于(3—1)倍,因此

剩下的小麦数量=(138—94)÷(3—1)=22(吨)

运出的小麦数量=94—22=72(吨)

运粮的天数=72÷9=8(天)

答:

8天以后剩下的玉米是小麦的3倍

【和差问题含义】

已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】

大数=(和+差)÷2

小数=(和—差)÷2

【解题思路和方法】

简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1

甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

甲班人数=(98+6)÷2=52(人)

乙班人数=(98—6)÷2=46(人)

答:

甲班有52人,乙班有46人。

例2

长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

长=(18+2)÷2=10(厘米)

宽=(18—2)÷2=8(厘米)

长方形的面积=10×8=80(平方厘米)

答:

长方形的面积为80平方厘米。

例3

有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32—30)=2千克,且甲是大数,丙是小数。

由此可知

甲袋化肥重量=(22+2)÷2=12(千克)

丙袋化肥重量=(22—2)÷2=10(千克)

乙袋化肥重量=32—12=20(千克)

答:

甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

例4

甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?

“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)

乙车筐数=97—64=33(筐)

答:

甲车原来装苹果64筐,乙车原来装苹果33筐

【倍比问题含义】

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】

总量÷一个数量=倍数

另一个数量×倍数=另一总量

【解题思路和方法】

先求出倍数,再用倍比关系求出要求的数。

例1

100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

(1)3700千克是100千克的多少倍?

3700÷100=37(倍)

(2)可以榨油多少千克?

40×37=1480(千克)

列成综合算式40×(3700÷100)=1480(千克)

答:

可以榨油1480千克。

例2

今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

(1)48000名是300名的多少倍?

48000÷300=160(倍)

(2)共植树多少棵?

400×160=64000(棵)

列成综合算式400×(48000÷300)=64000(棵)

答:

全县48000名师生共植树64000棵。

例3

凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?

全县16000亩果园共收入多少元?

(1)800亩是4亩的几倍?

800÷4=200(倍)

(2)800亩收入多少元?

11111×200=2222200(元)

(3)16000亩是800亩的几倍?

16000÷800=20(倍)

(4)16000亩收入多少元?

2222200×20=44444000(元)

答:

全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

 

分析与解答:

从124里去掉商,是124-4=120,它是除数的1+4=5倍,除数是120÷5=24,被除数是24×4=94。

较复杂的和差倍问题

专题简析:

前面我们学习了和倍、差倍、和差三种应用题,有的题目需要通过转化而成为和倍、差倍、和差问题,这类问题叫做复杂的和差倍问题。

解答较复杂的和差倍问题,需要我们从整体上把握住问题的本质,将题目进行合理的转化,从而将较复杂的问题转化为一般和倍、差倍、和差应用题来解决。

例1:

两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍。

两箱原来各有茶叶多少千克?

分析与解答:

由“两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍”可求出现在甲箱中有茶叶96÷(1+3)=24千克。

由此可求出甲箱原来有茶叶24+12=36千克,乙箱原来有茶叶96-36=60千克。

例2:

甲、乙、丙三个同学做数学题,已知甲比乙多做5道,丙做的是甲的2倍,比乙多做20道。

他们一共做了多少道数学题?

分析与解答:

甲比乙多5道,丙比乙多20道,丙做的是甲的2倍,因此,20-5=15道是丙的一半,也就是甲做的道数。

丙做了15×2=30道,乙做了15-5=10道。

他们共做了:

(20-5)×(1+2)+[(20-5)-5]=55道。

例3:

某工厂一、二、三车间共有工人280人,第一车间比第二车间多10人,第二车间比第三车间多15人。

三个车间各有工人多少人?

分析与解答:

这是多量的和差问题,解题的时候确定的标准不同,解法也就不同。

如果以第二车间的人数为标准,第一车间减少10人,第三车间增加15人,那么280-10+15=285人是第二车间人数的3倍,由此可以求出第二车间有285÷3=95人,第一车间有95+10=105人,第三车间有95-15=80人。

例4:

两个数相除,商是4,被除数、除数、商的和是124。

被除数和除数各是多少?

例5:

甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍。

甲、乙原来各有存款多少元?

分析与解答:

由“乙存入110元,甲取出110元”,可知乙存入110元后相当于甲存款数的3倍,取出110×3=330元;而由甲的存款是乙的4倍,可知甲原有存款的3倍相当于乙原有存款的4×3=12倍,乙现在存入110元后相当于甲原有的12倍,取110×3=330元,所以,330+110=440元,相当于乙原有的12-1=11倍。

所以,乙原有存款440÷11=40元,甲原有存款40×4=160元。

较复杂的和差倍问题

练习一

1,书架的上、下两层共有书180本,如果从上层取下15本放入下层,那么下层的本数正好是上层的2倍。

两层原来各有书多少本?

 

2,甲、乙两人共储蓄2000元,甲取出160元,乙又存入240元,这时甲储蓄的钱数比乙的2倍少20元。

甲、乙两人原来各储蓄多少元?

 

3,某畜牧场共有绵羊和山羊3561只,后来卖了60只绵羊,又买来山羊100只,现在绵羊的只数比山羊的2倍多1只。

原来绵羊和山羊各有多少只?

 

练习二

1,某厂一季度创产值比三季度多2万元,二季度的产值是一季度产值的2倍,比三季度产值多42万元。

三个季度共创产值多少万元?

 

2,甲、乙、丙三个人合做一批零件,甲比乙多做12个,丙做的比甲的2倍少20个,比乙做的多38个。

这批零件共有多少个?

 

3,果园里的苹果树是桃树的3倍,管理员每天能给25棵苹果树和15棵桃树洒农药。

几天后,当桃树喷完农药时,苹果树还有140棵没有喷药。

果园里共有多少棵树?

 

练习三

1,一个三层书架共放书168本,上层比中层多12本,下层比中层少6本。

三层各放书多少本?

 

2,一个三层柜台共放皮鞋120双,第一层比第二层多放4双,第二层比第三层多7双,三层各多皮鞋多少双?

3,四个数的和是152,第一个数比第二个数多16,比第三个数多20,比第四个数少12。

第一个数和第四个数是多少?

练习四

1,在一个除法算式中,被除数、除数、商的和是123。

已知商是3,被除数和除数各是多少?

 

2,两个数相除,商是5,余数是7,被除数、除数、商、余数的和是187,求被除数。

 

3,两个数相除,商是17,余数是8,被除数、除数、商和余数的和是501,求被除数和除数是多少。

 

练习五

1,甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍。

甲、乙原来各有存款多少元?

 

2,刘叔叔的存款是李叔叔的6倍,如果刘叔叔取出1100元,李叔叔存入1100元,那么刘叔叔的存款是李叔叔的2倍。

刘叔叔和李叔叔原来各有存款多少元?

 

3,有大、中、小三筐菠萝,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍。

大、中、小三筐各装菠萝多少千克?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 电力水利

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1