htcih说明书.docx

上传人:b****5 文档编号:3975630 上传时间:2022-11-26 格式:DOCX 页数:10 大小:70.31KB
下载 相关 举报
htcih说明书.docx_第1页
第1页 / 共10页
htcih说明书.docx_第2页
第2页 / 共10页
htcih说明书.docx_第3页
第3页 / 共10页
htcih说明书.docx_第4页
第4页 / 共10页
htcih说明书.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

htcih说明书.docx

《htcih说明书.docx》由会员分享,可在线阅读,更多相关《htcih说明书.docx(10页珍藏版)》请在冰豆网上搜索。

htcih说明书.docx

htcih说明书

HTCI-H全自动电容电流测试仪说明书

目录

一、用途及特点…………………………………………………………2

二、技术指标……………………………………………………………3

三、面板介绍……………………………………………………………3

四、测量原理……………………………………………………………4

五、配电网中PT接线方式及变比……………………………………5

1)3PT接线方式………………………………………………………5

2)4PT接线方式………………………………………………………8

六、使用方法……………………………………………………………11

七、仪器检验……………………………………………………………14

八、测量实例……………………………………………………………14

 

一、用途及特点

本仪器适用配网电压等级:

6kV、10kV和35kV中压配电网中性点不接地系统

目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。

据统计,配电网的故障很大程度是由于线路单相接地时电容过大而无法自行息弧引起的。

因此,我国的电力规程规定当10kV和35kV系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。

本测试仪直接从PT的二次侧测量配电网的电容电流,与传统的测试方法相比,该仪器无需和一次侧打交道,因而不存在试验的危险性,无需做繁杂的安全措施和等待冗长的调度命令,只需将测量线接于PT的开口三角端就可以测量出电容电流的数据。

由于从PT开口三角处注入的是微弱的异频测试信号,所以既不会对继电保护和PT本身产生任何影响,又避开了50Hz的工频干扰信号,同时测试仪的输出端可以耐受100V的交流电压,若测量时系统有单相接地故障发生,亦不会损坏PT和测试仪,因而无需做特别的安全措施,使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠。

另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值。

传统的测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。

该测试仪采用大屏幕液晶显示,中文菜单,操作非常简便,且体积小、重量轻,便于携带进行户外作业,接线简单,测试速度快,数据准确性高,大大减轻了试验人员的劳动强度,提高了工作效率。

二、技术指标

1.测量范围:

电容电流1~500A0~250μF

2.工作电源:

AC220V±10%50Hz±1Hz

3.注入信号频率:

10Hz~100Hz

4.测量误差:

≤读数5%

5.工作温度:

-10℃~50℃,湿度:

0~80%

6.外行尺寸:

350mm×200mm×150mm

7.仪器重量:

5kg

三、仪器面板

 

1.电压输出端子:

输出测量信号,接到PT开口三角端

2.电压输出开关:

接通或者断开测量电压输出

3.频率选择开关:

选择二个不同频率F1、F2的测量电压输出

4.电压调节旋钮:

调节测量电压输出值的大小

5.打印机:

打印测量数据和波形

8.按键功能区。

【→】和【←】键可用于平移光标,还可用于改变数值大小。

【↓】和【↑】键可用于改变光标的上下位置,有时可用于增减数字。

【退出】表示否定光标提示,【打印】按此键后,可将屏幕所显示的测量数据打印出来。

【确认】表示肯定光标提示。

【复位】按此键后,再按【确认】跳回主菜单。

四、测量原理

图1测量原理图

 

图1

图2简化物理模型

本型号配网电容电流测试仪是从PT开口三角侧来测量配网的电容电流的,其测量测量原理如图1所示。

在图1中,从PT开口三角注入一个异频的电流(非50Hz的交流电流,目的为了消除工频电压的干扰),这样在PT高压侧就感应出一个按变比减小的电流,此电流为零序电流,即其在三相的大小和方向相同,因此它在电源和负荷侧均不能流通,只能通过PT和对地电容形成回路,所以图1又可简化为图2。

根据图2的物理模型就可建立相应的数学模型,通过检测测量信号就可以测量出三相对地电容值3C0,再根据公式I=3ωCOUφ(Uφ为被测系统的相电压)计算出配网系统的电容电流。

五、配电网中PT接线方式及PT的变比

配电网中的PT接线方式和PT的变比会对测试仪的测量结果产生很大的影响,如果PT的接线方式和变比选择不正确,测量结果将不是系统的真实电容电流值,而是真实值乘以两变比之商的平方倍。

因此为了测得正确的数据,在测试前必须对配电网中PT的接线方式及PT变比有一个清晰的了解。

目前,我国配电网的PT接线方式有以下几种:

1)3PT接线方式:

这种接线方式分“N接地”、“B相接地”两种,分别如图3和图4所示。

对于这两种方式,均从N-L两端注入测试信号。

根据所用PT的不同,组成开口三角的二次绕组可能是

100/3(V)、

100(V)或者是100/√3(V)绕组,这样,测量时PT的变比分别为:

(其中为的配电网系统的线电压,如6kV、10kV或35kV)。

图3N接地方式

 

图4B相接地方式

图四、图五所示的系统运行方式是从开口三角测量系统容流时所必须的运行方式,

而对于一般的配网系统,并不都是处于这样的运行方式下,例如在系统中还接有消弧线圈、PT高压侧中性点接有高阻消谐器、PT开口三角接有二次消谐装置等。

这时,为了使用测试仪进行容性电流的测量,必须将运行方式转换为图3或图4所示的运行方式。

常见的采用3PT接线方式的配网其运行方式如图5所示:

图5常见的采用3PT接线方式的配网运行方式

这时,使用“配网电容电流测试仪”测量配网电容电流前必须完成以下操作:

1检查测量用的PT高压侧中性点是否安装高阻消谐器,如有,将其短接。

从测量原理可知,选用哪组PT进行测量,我们就只考虑这组PT的接线情况。

而无需关心系统内的其他PT的情况。

如果系统中有些PT安装高阻消谐器,有些没安装,则完全可以从没有安装高阻消谐器的PT进行测量,这样可以省去短接消谐器的工作。

2检查消弧线圈是否全部退出运行。

在有电气联系的被测电压等级系统中所有消弧线圈均要退出运行,并非只退出该变电站的消弧线圈。

同时只考虑被测电压等级的情况,无需考虑其他电压等级的情况。

例如,被测变电站A为10kV系统,并通过联络线与变电站B的10kV系统相连,变电站A有2台消弧线圈,变电站B有1台消弧线圈,则测量时有电气联系的这3台消弧线圈均要退出运行;而35kV系统有无消弧线圈则无需考虑。

3退出PT开口三角的消谐装置。

如果经过实测证明,开口三角所接的某些厂家某些型号的二次消谐装置对测量结果没有影响,则消谐装置可以不退出运行。

一般对于微电脑控制的消谐器,其只有在系统有谐振发生时才动作,该类消谐器一般对测量无影响。

4如果PT二次侧并列运行(很少见),则将其改为单独运行。

确保将“电容电流测试仪”的电流输出端正确接到图四的开口三角N-L上。

一般在二次的端子编号为N600和L630。

为了确保连接正确,可以按下列方法进行检查:

(1)用万用表分别测量PT二次侧三相电压和开口三角电压;

(2)将三相电压中的最大值减去最小值得到的差和开口三角电压比较,如果两者差不多,就说明找到的开口三角端是正确的;如果两者差别很大,则说明没有正确找到开口三角端。

例如,测量得到三相电压分别为61V、60V、59.5V,则正确的开口三角电压应为1.5V左右,如果测量得到的开口三角电压仅为0.2V,说明找到的开口三角端不正确或PT开口三角连线已经断开(在现场实测中发现有多个变电站的PT开口三角连线断开情况)。

5选择正确的PT变比,也就是选择正确的PT接线方式。

配网电容电流测试仪是通过选择PT接线方式和系统电压来达到选择PT变比的作用,这样对于试验人员会更方便、快捷。

PT一般是采用100/3V的二次绕组连接成开口三角,但也有特殊的情况,有些变电站的PT采用100V二次绕组组成开口三角。

为了确保选择变比的正确,可以通过测量组成开口三角的各绕组的电压来确定。

完成以上操作后,就可以运用配网电容电流测试仪进行准确测量电容电流了。

2)4PT接线方式:

 

图64PT接线方式一

大部分变电站中的4PT的接线方式有两种接法,分别如图七和图八所示。

对于图6中这种4PT的接线方式,组成星形的三个PT的开口三角侧被短接,系统零序电压由第四个PT的测量线圈来测量,各相电压分别从A-N、B-N、C-N端测量。

这种接线方式下,系统单相接地时N-L端的电压为57.7V。

图7中的接线和图6中的接线唯一区别是在N-L端串接入第四个PT的33V二次线圈,这样当系统单相接地时,N-L两端电压为91V(即57.7V+33.3V)。

在图6和图7中,测量信号都是从N-L端注入。

在图6中,零序PT(即第4个PT)的二次零序绕组是ox-oa绕组,其电压通常为则测量时PT变比为

在图7中,零序PT(即第4个PT)的二次零序绕组是由主绕组ox-oa绕组和副绕组oxo-oao串联组成,

主绕组ox-oa的电压为(V),副绕组oxo-oao的电压为100/3V,则测量时PT变比为

 

图74PT接线方式二

其中,

为的配电网系统的线电压,如6kV、10kV或35kV。

第三种4PT接线方式如图8所示。

这种接线方式比较少见,但在系统中还是存在。

在图8中这种接线方式三相PT的三个二次辅助绕组即:

1ao-1xo、2ao-2xo、3ao-3xo组成开口三角L601-L602,oa-ox和oao-oxo为零序PT的两个二次绕组,它们与开口三角L601-L602组成一个大的开口三角N600-L601。

相电压也是从a、b、c与N6000中测量。

对于这种接线方式,将L601和L602短接,并从N600和L601端注入测量电流。

图84PT接线方式三

对于4PT的接线方式,当被测的三相对地电容小于10微法时(10KV电容电流约为20A),测量结果是准确的。

但当被测电容太大时,测量结果就会随电容的增大而偏差较多。

如果比较准确测量,可将4PT接线的运行方式转变为3PT的运行方式,然后按前面所述的3PT方式进行测量。

将4PT接线的运行方式转变为3PT的运行方式的方法如下:

1对于4PT的接线方式一和方式二,将第四个PT高压侧短接,并将被短接的开口三角侧打开,从打开两侧注入电流测量即可。

这时4PT接线的运行方式就完全变成了3PT的运行方式。

2对于4PT的接线方式三,将零序PT即图8中所示的PT4的高压绕组短接,将仪器的电流输出端接到图8中所示的开口三角L601-L602,就可以开始测量了。

其接线图如图9所示。

图94PT接线方式转变为3PT接线方式测量示意图

六、仪器使用方法

在测量中,如系统有3PT的接线PT,尽量从3PT中测量,尽量避免采用4PT接线方式。

对于4PT接线方式的系统,则将仪器的电流输出端与图3或图4中所示的N-L端相连即可。

也可将4PT接线的运行方式转变为3PT的运行方式,然后按前面所述的3PT方式进行测量。

将测试仪的电压输出端与PT开口三角端正确连接,

1.首先将仪器可靠接地。

将仪器电压调节旋钮置于零位,电压输出开关放在断开位置,频率选择放在F1处,

2.接通电源,开机后仪器在液晶屏上显示第1屏开机主菜单,

 

3.进入设置菜单(第2屏),测量电容电流时,一定要选择串联模式,

在电压等级下,有10KV/

、380V/

、6。

6KV/

、35KV/

和10KV、380V、6。

6KV、35KV八个数字可供选择。

在PT变比下,按实际高低压值输入(参考以下内容),然后按确认键,进入第3屏存入设置值

3PT接线方式一,组成开口三角的绕组电压为100/3(V),PT变比为;

3PT接线方式二,组成开口三角的绕组电压为100(V),PT变比为;

3PT接线方式三,组成开口三角的绕组电压为

(V),PT变比为;

4PT接线方式一,第四个PT的变比为;

4PT接线方式二,第四个PT变比为。

 

5.按确认键,进入测量过程;将仪器电压输出开关放在接通位置,缓慢调节电压输出调节旋钮,一般该电压在2V以下,这时候,屏幕进入第4屏,待测量数据稳定后,按确认键选出第一频率下的数据;

6.然后,将频率选择放在F2处,保持刚才的电压输出,待测量数据稳定后,再按确认键,这时候,屏幕进入第5屏,

仪器显示所测系统的电容电流和系统对地电容值等相关参数。

 

7.如果需要打印测量结果,按确认键即可;

8.如果需要将测量结果保存,按退出键可以进入第6屏存入菜单1,第7屏存入菜单2

 

9.如果需要查询测量结果,在开机主菜单中,将光标放在查询处,按确认键可以进入第8屏查询菜单

10.第9屏校验菜单需要密码才能进入,用户无需进行该工作。

 

七、仪器检验和日常校准

为了确认配网电容电流测试仪是否正常,可以在PT不带电的情况下对测试仪进行检验和校准。

检验方法如下:

取一个10kV(其他电压等级亦可)的PT,在高压端接入一个已知电容量的电容(耐压大于100V即可),将二次侧主绕组a-x端(电压为)与测试仪的电流输出端连接,即从a-x端进行测量。

选择测试仪的系统线电压为“10kV”(如果PT是其他电压等级的,则选择相应的系统线电压)、方式为“4PT”,长按“方式/测量”键进行测量,如果测量结果和已知电容的电容量一致,说明该测试仪是正常的,测量是准确的,可以用于现场测量。

八、测量实例

1.PT高压侧中性点安装有高阻消谐器。

2002年8月,在广西钦州供电局的刘屋变10kV系统电容电流测量。

⑴ 现象

用测试仪测量时,发现测量计数直到显示18才得到测量结果,显示结果为0.76微法,这个结果显然不对。

用传统的外接电容间接测量方法得到电容电流为48.6A,两者测量结果相差很远。

原来也怀疑是测试仪的问题,后来对测试仪进行校验证明测试仪是好的。

为了调查此次测量不准确的原因,再到变电站测量现场,结果发现PT的高压侧中性点不是直接接地,而是连接了一个高阻的消谐器后再接地。

为了验证测试仪的是否能准确测量,将该高阻消谐器短接后再用测试仪测量,测量结果为47.8A,与传统方法测量结果吻合。

钦州供电局的牛头湾变也有类似的情况。

⑵ 处理措施

将高阻消谐器短接后测量正常。

一般高阻消谐器上的电压为几百伏左右,而且PT的阻抗很大,可以在不停电情况下直接将其短接,但要注意和高压侧保持距离。

2.消弧线圈没有退出或系统的中性点有接地现象。

2002年11月,在广西桂林供电局的东江变35kV系统电容电流测量。

⑴ 现象

在城西变测量时,显示结果为999.9微法,试验人员怀疑没有退出消弧线圈,但该变电站没有安装消弧线圈。

为了证实测试仪没有问题,又到了城东变进行电容电流测量,测量结果正确。

城西变的三相电压对称,可以排除单相接地故障的存在。

经询问城西变的运行人员,得知城西变供给较多的厂矿用户,有些用户直接使用10kV电动机,我们怀疑是在用户侧电动机的中性点有接地现象。

对于系统的中性点(包括用户侧)有接地现象,即使是使用传统的间接法测量,也会得到一个错误的结果。

如果采用单相直接接地法测量,测量结果也不是对地电容产生的电容电流,而是叠加了一个中性点接地的那台设备的电流,因而对于这种情况无论是什么方法都不能正确测量电容电流。

⑵ 处理措施

查找接地点并消除后再用测试仪测量。

⑴ 现象

在东江变测量时,显示结果为999.9微法,这个结果说明系统的电容电流无穷大。

经检查发现,在其他变电站运行的消弧线圈没有退出运行(因为该35kV系统的环网运行的),退出消弧线圈后再测量,测量结果正常。

⑵ 处理措施

退出消弧线圈后再测量。

2004年1月,在广西河池供电局的城西变10kV系统电容电流测量。

 

3.没有退出PT的开口三角侧的消谐器。

2002年9月,在广西贵港航运仙衣滩电厂10kV系统电容电流测量。

⑴ 现象

未断开开口三角侧的消谐器时测量结果为113A,断开消谐器后测量结果为15.6A,然后用传统的间接法测量结果为15.1A。

该电厂采用的消谐器为老式的消谐器,阻抗比较小,因此对测量结果影响较大。

⑵ 处理措施

断开PT开口三角侧的消谐器后再测量。

4.PT的开口三角连接线断开,没有形成开口三角。

2002年3月,在广西南宁供电局的城东变10kV系统电容电流测量。

⑴ 现象

测量城东变电容电流时,一段母线测量结果正常,测量二段母线时,结果显示“电路开路”,后经二次人员检测,果然发现组成PT开口三角的连接线断开。

由于PT开口三角仅用于发接地信号,因此值班人员不易发现其断线。

在广西合山电厂的35kV变电站和南宁几个变电站均通过该测试仪检测出PT开口三角的连接线断开的情况。

⑵ 处理措施

将连接线恢复后再测量。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 视频讲堂

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1