20世纪化学的回顾与21世纪化学之展望.docx

上传人:b****5 文档编号:3902703 上传时间:2022-11-26 格式:DOCX 页数:18 大小:108.71KB
下载 相关 举报
20世纪化学的回顾与21世纪化学之展望.docx_第1页
第1页 / 共18页
20世纪化学的回顾与21世纪化学之展望.docx_第2页
第2页 / 共18页
20世纪化学的回顾与21世纪化学之展望.docx_第3页
第3页 / 共18页
20世纪化学的回顾与21世纪化学之展望.docx_第4页
第4页 / 共18页
20世纪化学的回顾与21世纪化学之展望.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

20世纪化学的回顾与21世纪化学之展望.docx

《20世纪化学的回顾与21世纪化学之展望.docx》由会员分享,可在线阅读,更多相关《20世纪化学的回顾与21世纪化学之展望.docx(18页珍藏版)》请在冰豆网上搜索。

20世纪化学的回顾与21世纪化学之展望.docx

20世纪化学的回顾与21世纪化学之展望

20世纪化学的回顾与21世纪化学之展望

王彦广

化学是在原子、分子层次上研究物质的组成、结构、性质及其变化规律的一门科学,它涉及存在于自然界的物质(如矿物、空气中的气体、海洋里的水和盐、动植物体内的化学成分),以及由化学家创造的新物质,它涉及自然界的变化(如因闪电而着火的树木、生命过程中的化学变化),还有那些由化学家发明创造的新变化。

作为自然科学中的一门基础学科,化学是当代科学技术和人类物质文明迅猛发展的基础和动力,是一门中心的、实用的和创造性的科学,是一门古老而又生机勃勃的科学。

现在很多化学工作者都在预测21世纪化学学科发展的前景,推测21世纪化学会在哪些方面取得重大突破?

会遇到哪些挑战和难题?

什么是未来化学的新生长点?

化学在整个科学体系中占有什么地位?

实际上,我们只要温故以知新,就不难看出未来化学发展的动向。

1.20世纪化学的辉煌成就

20世纪人类对物质需求的日益增加以及科学技术的迅猛发展,极大的推动了化学学科自身的发展。

化学不仅形成了完整的理论体系,而且在理论的指导下,化学实践为人类创造了丰富的物质。

从19世纪的经典化学到20世纪的现代化学的飞跃,从本质上说是从19世纪的道尔顿原子论、门捷列夫元素周期表等在原子的层次上认识和研究化学,进步到20世纪在分子的层次上认识和研究化学。

如对组成分子的化学键的本质、分子的强相互作用和弱相互作用、分子催化、分子的结构与功能关系的认识,以至1900多万种化合物的发现与合成;对生物分子的结构与功能关系的研究促进了生命科学的发展。

另一方面,化学过程工业以及与化学相关的国计民生的各个领域,如粮食、能源、材料、医药、交通、国防以及人类的衣食住行用等,在这100年中发生的变化是有目共睹的。

过去的100年间化学学科的重大突破性成果可从历届诺贝尔化学奖获得者的重大贡献中获悉(见表1)。

 

表1历届诺贝尔化学奖获奖简况

获奖年份

获奖者

国籍

获奖成就

1901

J.H.van’tHoff

荷兰

溶剂中化学动力学定律和渗透压定律

1902

E.Fisher

德国

糖类和嘌啉化合物的合成

1903

S.Arrhenius

瑞典

电离理论

1904

W.Ramsay

英国

惰性气体的发现及其在元素周期表中位置的确定

1905

A.vonBaeyer

德国

有机染料和氢化芳香化合物的研究

1906

H.Moissan

法国

单质氟的制备,高温反射电炉的发明

1907

E.Buchner

德国

发酵的生物化学研究

1908

E.Rutherford

英国

元素嬗变和放射性物质的化学研究

1909

W.Ostwald

德国

催化、电化学和反应动力学研究

1910

O.Wallach

德国

脂环族化合物的开创性研究

1911

M.Curie

波兰

放射性元素钋和镭的发现

1912

V.Grignard

P.Sabatier

法国

法国

格氏试剂的发现

有机化合物的催化加氢

1913

A.Werner

瑞士

金属络合物的配位理论

1914

Th.Richards

美国

精密测定了许多元素的原子量

1915

R.Willstatter

德国

叶绿素和植物色素的研究

1916

1917

1918

F.Haber

德国

氨的合成

1919

1920

W.Nernst

德国

热化学研究

1921

F.Soddy

英国

放射性化学物质的研究及同位素起源和性质的研究

1922

F.W.Aston

英国

质谱仪的发明,许多非放射性同位素及原子量的整数规则的发现

1923

F.Pregl

奥地利

有机微量分析方法的创立

1924

1925

R.Zsigmondy

德国

胶体化学研究

1926

T.Svedberg

瑞士

发明超速离心机并用于高分散胶体物质研究

1927

H.Wieland

德国

胆酸的发现及其结构的测定

1928

A.Windaus

法国

甾醇结构测定,维生素D3的合成

1929

A.Harden

H.vonEuler-Chelpin

英国

法国

糖的发酵以及酶在发酵中作用的研究

1930

H.Fischer

德国

血红素、叶绿素的结构研究,高铁血红素的合成

1931

C.Bosch

F.Bergius

德国

德国

化学高压法

1932

J.Langmuir

美国

表面化学研究

1933

1934

H.C.Urey

美国

重水和重氢同位素的发现

1935

F.Joliot-Curie

I.Joliot-Curie

法国

法国

新人工放射性元素的合成

1936

P.Debye

荷兰

提出了极性分子理论,确定了分子偶极矩的测定方法

1937

W.N.Haworth

P.Karrer

英国

瑞士

糖类环状结构的发现,维生素A、C和B12、胡萝卜素及核黄素的合成

1938

R.Kuhn

德国

维生素和类胡萝卜素研究

1939

A.F.J.Butenandt

L.Ruzicka

德国

瑞士

性激素研究

聚亚甲基多碳原子大环和多萜烯研究

1940

1941

1942

1943

G.Heresy

匈牙利

利用同位素示踪研究化学反应

1944

O.Hahn

德国

重核裂变的发现

1945

A.J.Virtamen

荷兰

发明了饲料贮存保鲜方法,对农业化学和营养化学做出贡献

1946

J.B.Sumner

J.H.Northrop

W.M.Stanley

美国

美国

美国

发现酶的类结晶法

分离得到纯的酶和病毒蛋白

1947

R.Robinson

英国

生物碱等生物活性植物成分研究

1948

A.W.K.Tiselius

瑞典

电泳和吸附分析的研究,血清蛋白的发现

1949

W.F.Giaugue

美国

化学热力学特别是超低温下物质性质的研究

1950

O.Diels

K.Alder

德国

德国

发现了双烯合成反应,即Diels-Alder反应

1951

E.M.Mcmillan

G.Seaborg

美国

美国

超铀元素的发现

1952

A.J.P.Martin

R.L.M.Synge

英国

英国

分配色谱分析法

1953

H.Staudinger

德国

高分子化学方面的杰出贡献

1954

L.Pauling

美国

化学键本质和复杂物质结构的研究

1955

V.du.Vigneand

美国

生物化学中重要含硫化合物的研究,多肽激素的合成

1956

C.N.Hinchelwood

英国

苏联

化学反应机理和链式反应的研究

1957

A.Todd

英国

核苷酸及核苷酸辅酶的研究

1958

F.Sanger

英国

蛋白质结构特别是胰岛素结构的测定

1959

J.Heyrovsky

捷克

极谱分析法的发明

1960

W.F.Libby

美国

14C测定地质年代方法的发明

1961

M.Calvin

美国

光合作用研究

1962

M.F.Perutz

J.C.Kendrew

英国

英国

蛋白质结构研究

1963

K.Ziegler

G.Natta

德国

意大利

Ziegler-Natta催化剂的发明,定向有规高聚物的合成

1964

D.C.Hodgkin

英国

重要生物大分子的结构测定

1965

R.B.Woodward

美国

天然有机化合物的合成

1966

R.S.Mulliken

美国

分子轨道理论

1967

M.Eigen

R.G.W.Norrish

G.Porter

德国

英国

英国

用驰豫法、闪光光解法研究快速化学反应

1968

L.Onsager

美国

不可逆过程热力学研究

1969

D.H.R.Barton

O.Hassel

英国

挪威

发展了构象分析概念及其在化学中的应用

1970

L.F.Leloir

阿根廷

从糖的生物合成中发现了糖核苷酸的作用

1971

G.Herzberg

加拿大

分子光谱学和自由基电子结构

1972

C.B.Anfinsen

S.Moore

W.H.Stein

美国

美国

美国

核糖核酸酶分子结构和催化反应活性中心的研究

1973

G.Wilkinson

E.O.Fischer

英国

德国

二茂铁结构研究,发展了金属有机化学和配合物化学

1974

P.J.Flory

美国

高分子物理化学理论和实验研究

1975

J.W.Cornforth

V.Prelog

英国

瑞士

酶催化反应的立体化学研究

有机分子和反应的立体化学研究

1976

W.N.Lipscomb,Jr.

美国

有机硼化合物的结构研究,发展了分子结构学说和有机硼化学

1977

I.Prigogine

比利时

研究非平衡的不可逆过程热力学

1978

P.Mitchell

英国

用化学渗透理论研究生物能的转换

1979

H.C.Brown

G.Wittig

美国

德国

发展了有机硼和有机磷试剂及其在有机合成中的应用

1980

P.Berg

F.Sanger

W.Gilbert

美国

英国

美国

DNA分裂和重组研究,DNA测序,开创了现代基因工程学

1981

KenichFukui

R.Hoffmann

日本

美国

提出前线轨道理论

提出分子轨道对称守恒原理

1982

A.Klug

英国

发明了“象重组”技术,利用X-射线衍射法测定了染色体的结构

1983

H.Taube

美国

金属配位化合物电子转移反应机理研究

1984

R.B.Merrifield

美国

固相多肽合成方法的发明

1985

H.A.Hauptman

J.Karle

美国

美国

发明了X-射线衍射确定晶体结构的直接计算方法

1986

李远哲

D.R.Herschbach

J.Polanyi

美国

美国

加拿大

发展了交叉分子束技术、红外线化学发光方法,对微观反应动力学研究作出重要贡献

1987

C.J.Pedersen

D.J.Cram

J-M.Lehn

美国

美国

法国

开创主-客体化学、超分子化学、冠醚化学等新领域

1988

J.Deisenhoger

H.Michel

R.Huber

德国

德国

德国

生物体中光能和电子转移研究,光合成反应中心研究

1989

T.Cech

S.Altman

美国

美国

Ribozyme的发现

1990

E.J.Corey

美国

有机合成特别是发展了逆合成分析法

1991

R.R.Ernst

瑞士

二维核磁共振

1992

R.A.Marcus

美国

电子转移反应理论

1993

M.Smith

K.B.Mullis

加拿大

美国

寡聚核苷酸定点诱变技术

多聚酶链式反应(PCR)技术

1994

G.A.Olah

美国

碳正离子化学

1995

M.Molina

S.Rowland

P.Crutzen

墨西哥

美国

荷兰

研究大气环境化学,在臭氧的形成和分解研究方面作出重要贡献

1996

R.F.Curl

R.E.Smalley

H.W.Kroto

美国

美国

英国

发现C60

1997

J.Skou

P.Boyer

J.Walker

丹麦

美国

英国

发现了维持细胞中钠离子和钾离子浓度平衡的酶,并阐明其作用机理

发现了能量分子三磷酸腺苷的形成过程

1998

W.Kohn

J.A.Pople

美国

发展了电子密度泛函理论

发展了量子化学计算方法

1999

A.H.Zewail

美国

飞秒技术研究超快化学反应过程和过渡态

2000

 

(1)放射性和铀裂变的重大发现

20世纪在能源利用方面一个重大突破是核能的释放和可控利用。

仅此领域就产生了6项诺贝尔奖。

首先是居里夫妇从19世纪末到20世纪初先后发现了放射性比铀强400倍的钋,以及放射性比铀强200多万倍的镭,这项艰巨的化学研究打开了20世纪原子物理学的大门,居里夫妇为此而获得了1903年诺贝尔物理学奖。

1906年居里不幸遇车祸身亡,居里夫人继续专心于镭的研究与应用,测定了镭的原子量,建立了镭的放射性标准,同时制备了20克镭存放于巴黎国际度量衡中心作为标准,并积极提倡把镭用于医疗,使放射治疗得到了广泛应用,造福人类。

为表彰居里夫人在发现钋和镭、开拓放射化学新领域以及发展放射性元素的应用方面的贡献,1911年被授予了诺贝尔化学奖。

20世纪初,卢瑟福从事关于元素衰变和放射性物质的研究,提出了原子的有核结构模型和放射性元素的衰变理论,研究了人工核反应,因此而获得了1908年的诺贝尔化学奖。

居里夫人的女儿和女婿约里奥-居里夫妇用钋的射线轰击硼、吕、镁时发现产生了带有放射性的原子核,这是第一次用人工方法创造出放射性元素,为此约里奥-居里夫妇荣获了1935年的诺贝尔化学奖。

在约里奥-居里夫妇的基础上,费米用曼中子轰击各种元素获得了60种新的放射性元素,并发现中子轰击原子核后,就被原子核捕获得到一个新原子核,且不稳定,核中的一个中子将放出一次衰变,生成原子序数增加1的元素。

这一原理和方法的发现,使人工放射性元素的研究迅速成为当时的热点。

物理学介入化学,用物理方法在元素周期表上增加新元素成为可能。

费米的这一成就使他获得了1938年的诺贝尔物理学奖。

1939年哈恩发现了核裂变现象,震撼了当时的科学界,成为原子能利用的基础,为此,哈恩获得了1944年诺贝尔化学奖。

1939年费里施在裂变现象中观察到伴随着碎片有巨大的能量,同时约里奥-居里夫妇和费米都测定了铀裂变时还放出中子,这使链式反应成为可能。

至此释放原子能的前期基础研究已经完成。

从放射性的发现开始,然后发现了人工放射性,再后又发现了铀裂变伴随能量和中子的释放,以至核裂变的可控链式反应。

于是,1942年费米领导下成功的建造了第一座原子反应堆,1945年美国在日本投下了原子弹。

核裂变和原子能的利用是20世纪初至中叶化学和物理界具有里程碑意义的重大突破。

(2)化学键和现代量子化学理论

在分子结构和化学键理论方面,鲍林(L.Pauling,1901-1994)的贡献最大。

他长期从事X-射线晶体结构研究,寻求分子内部的结构信息,把量子力学应用于分子结构,把原子价理论扩展到金属和金属间化合物,提出了电负性概念和计算方法,创立了价键学说和杂化轨道理论。

1954年由于他在化学键本质研究和用化学键理论阐明物质结构方面的重大贡献而荣获了诺贝尔化学奖。

此后,莫利肯运用量子力学方法,创立了原子轨道线性组合分子轨道的理论,阐明了分子的共价键本质和电子结构,1966年荣获诺贝尔化学奖。

另外,1952年福井谦一提出了前线轨道理论,用于研究分子动态化学反应。

1965年R.B.Woodward,和R.Hoffman提出了分子轨道对称守恒原理,用于解释和预测一系列反应的难易程度和产物的立体构型。

这些理论被认为是认识化学反应发展史上的一个里程碑,为此,福井谦一和Hoffman共获1981年诺贝尔化学奖。

1998年科恩因发展了电子密度泛函理论,以及波普尔因发展了量子化学计算方法而共获了诺贝尔化学奖。

化学键和量子化学理论的发展足足花了半个世纪的时间,让化学家由浅入深,认识分子的本质及其相互作用的基本原理,从而让人们进入分子的理性设计的高层次领域,创造新的功能分子,如药物设计、新材料设计等,这也是20世纪化学的一个重大突破。

(3)合成化学的发展

创造新物质是化学家的首要任务。

100年来合成化学发展迅速,许多新技术被用于无机和有机化合物的合成,例如,超低温合成、高温合成、高压合成、电解合成、光合成、声合成、微波合成、等离子体合成、固相合成、仿生合成等等;发现和创造的新反应、新合成方法数不胜数。

现在,几乎所有的已知天然化合物以及化学家感兴趣的具有特定功能的非天然化合物都能够通过化学合成的方法来获得。

在人类已拥有的1900多万种化合物中,绝大多数是化学家合成的,几乎又创造出了一个新的自然界。

合成化学为满足人类对物质的需求作出了极为重要的贡献。

纵观20世纪,合成化学领域共获得10项诺贝尔化学奖。

1912年格林亚德因发明格氏试剂,开创了有机金属在各种官能团反应中的新领域而获得诺贝尔化学奖。

1928年狄尔斯和阿尔德因发现双烯合成反应而获得1950年诺贝尔化学奖。

1953年齐格勒和纳塔发现了有机金属催化烯烃定向聚合,实现了乙烯的常压聚合而荣获1963年诺贝尔化学奖。

人工合成生物分子一直是有机合成化学的研究重点。

从最早的甾体(A.Windaus,1928年诺贝尔化学奖)、抗坏血酸(W.N.Haworth,1937年诺贝尔化学奖)、生物碱(R.Robinson,1947年诺贝尔化学奖)到多肽(V.du.Vigneand,1955年诺贝尔化学奖)逐渐深入。

到1965年有机合成大师Woodward由于其有机合成的独创思维和高超技艺,先后合成了奎宁、胆固醇、可的松、叶绿素和利血平等一系列复杂有机化合物而荣获诺贝尔化学奖。

获奖后他又提出了分子轨道对称守恒原理,并合成了维生素B12等。

 

维生素B12

 

此外,Wilkinson和Fischer合成了过渡金属二茂夹心式化合物,确定了这种特殊结构,对金属有机化学和配位化学的发展起了重大推动作用,荣获1973年诺贝尔化学奖。

1979年Brown和Wittig因分别发展了有机硼和Wittig反应而共获诺贝尔化学奖。

1984年Merrifield因发明了固相多肽合成法对有机合成方法学和生命化学起了巨大推动作用而获得诺贝尔化学奖。

1990年Corey在大量天然产物的全合成工作中总结并提出了“逆合成分析法”,极大的促进了有机合成化学的发展,因此而获得诺贝尔化学奖。

现代合成化学是经历了近百年的努力研究、探索和积累才发展到今天可以合成像海葵毒素这样复杂的分子(分子式为C129H223N3O54,分子量为2689道尔顿,有64个不对称碳和7个骨架内双键,异构体数目多达271个)。

海葵毒素

 

(4)高分子科学和材料

20世纪人类文明的标志之一是合成材料的出现。

合成橡胶、合成塑料和合成纤维这三大合成高分子材料化学中具有突破性的成就,也是化学工业的骄傲。

在此领域曾有3项诺贝尔化学奖。

1920年H.Staudinger提出了高分子这个概念,创立了高分子链型学说,以后又建立了高分子粘度与分子量之间的定量关系,为此而获得了1953年的诺贝尔化学奖。

1953年Ziegler成功地在常温下用(C2H5)3AlTiCl4作催化剂将乙烯聚合成聚乙烯,从而发现了配位聚合反应。

1955年Natta将Ziegler催化剂改进为-TiCl3和烷基铝体系,实现了丙烯的定向聚合,得到了高产率、高结晶度的全同构型的聚丙烯,使合成方法-聚合物结构-性能三者联系起来,成为高分子化学发展史中一项里程碑。

为此,Ziegler和Natta共获了1963年诺贝尔化学奖。

1974年Flory因在高分子性质方面的成就也获得了诺贝尔化学奖。

(5)化学动力学与分子反应动态学

研究化学反应是如何进行的,揭示化学反应的历程和研究物质的结构与其反应能力之间的关系,是控制化学反应过程的需要。

在这一领域相继获得过3次诺贝尔化学奖。

1956年Semenov和Hinchelwood在化学反应机理、反应速度和链式反应方面的开创性研究获得了诺贝尔化学奖。

另外,Eigen提出了研究发生在千分之一秒内的快速化学反应的方法和技术,Porter和Norrish提出和发展了闪光光解法技术用于研究发生在十亿分之一秒内的快速化学反应,对快速反应动力学研究作出了重大贡献,他们三人共获了1967年诺贝尔化学奖。

分子反应动态学,亦称态-态化学,从微观层次出发,深入到原子、分子的结构和内部运动、分子间相互作用和碰撞过程来研究化学反应的速率和机理。

李远哲和Herschbach首先发明了获得各种态信息的交叉分子束技术,并利用该技术F+H2的反应动力学,对化学反应的基本原理作出了重要贡献,被称为分子反应动力学发展中的里程碑,为此李远哲、Herschbach和Polany共获了1986年诺贝尔化学奖。

1999年Zewail因利用飞秒光谱技术研究过渡态的成就获诺贝尔化学奖。

(6)对现代生命科学和生物技术的重大贡献

研究生命现象和生命过程、揭示生命的起源和本质是当代自然科学的重大研究课题。

20世纪生命化学的崛起给古老的生物学注入了新的活力,人们在分子水平上向生命的奥秘打开了一个又一个通道。

蛋白质、核酸、糖等生物大分子和激素、神经递质、细胞因子等生物小分子是构成生命的基本物质。

从20世纪初开始生物小分子(如糖、血红素、叶绿素、维生素等)的化学结构与合成研究就多次获得诺贝尔化学奖,这是化学向生命科学进军的第一步。

1955年Vigneand因首次合成多肽激素催产素和加压素而荣获了诺贝尔化学奖。

1958年Sanger因对蛋白质特别是牛胰岛素分子结构测定的贡献而获得诺贝尔化学奖。

1953年J.D.Watson和H.C.Crick提出了DNA分子双螺旋结构模型,这项重大成果对于生命科学具有划时代的贡献,它为分子生物学和生物工程的发展奠定了基础,为整个生命科学带来了一场深刻的革命。

Watson和Crick因此而荣获了1962年诺贝尔医学奖。

1960年J.C.Kendrew和M.F.Perutz利用X-射线衍射成功地测定了鲸肌红蛋白和马血红蛋白的空间结构,揭示了蛋白质分子的肽链螺旋区和非螺旋区之间还存在三维空间的不同排布方式,阐明了二硫键在形成这种三维排布方式中所起的作用,为此,他们二人共获了1962年诺贝尔化学奖。

1965年我国化学家人工合成结晶牛胰岛素获得成功,标志着人类在揭示生命奥秘的历程中迈进了一大步。

此外,1980年P.Berg、F.Sanger和W.Gilbert因在DNA分裂和重组、DNA测序以及现代基因工程学方面的杰出贡献而共获诺贝尔化学奖。

1982年A.Klug因发明“象重组“技术和揭示病毒和细胞内遗传物质的结构而获得诺贝尔化学奖。

1984年R.B.Merrifield因发明多肽固相合成技术而荣获诺贝尔化学奖。

1989年T.Cech和S.Altman因发现核酶(Ribozyme)而获得诺贝尔化学奖。

1993年M.Smith因发明寡核苷酸定点诱变法以及K.B.Mullis因发明多聚酶链式反应技术对基因工程的贡献而共获诺贝尔化学奖。

1997年J.Skou因发现了维持细胞中Na离子和K离子浓度平衡的酶及有关机理、P.Boyer和J.Walker因揭示能量分子ATP的形成过程而共获诺贝尔化学奖。

20世纪化学与生命科学相结合产生了一系列在分子层次上研究生命问题的新学科,如生物化学、分子生物学、化学生物学、生物有机化学、生物无

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1