办公基地太阳能光电建筑一体化应用示范项目实施方案.docx

上传人:b****6 文档编号:3876608 上传时间:2022-11-26 格式:DOCX 页数:29 大小:566.49KB
下载 相关 举报
办公基地太阳能光电建筑一体化应用示范项目实施方案.docx_第1页
第1页 / 共29页
办公基地太阳能光电建筑一体化应用示范项目实施方案.docx_第2页
第2页 / 共29页
办公基地太阳能光电建筑一体化应用示范项目实施方案.docx_第3页
第3页 / 共29页
办公基地太阳能光电建筑一体化应用示范项目实施方案.docx_第4页
第4页 / 共29页
办公基地太阳能光电建筑一体化应用示范项目实施方案.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

办公基地太阳能光电建筑一体化应用示范项目实施方案.docx

《办公基地太阳能光电建筑一体化应用示范项目实施方案.docx》由会员分享,可在线阅读,更多相关《办公基地太阳能光电建筑一体化应用示范项目实施方案.docx(29页珍藏版)》请在冰豆网上搜索。

办公基地太阳能光电建筑一体化应用示范项目实施方案.docx

办公基地太阳能光电建筑一体化应用示范项目实施方案

一、工程概况

1、工程概况

项目名称:

综合业务用房项目(一期)

项目单位:

(业主单位)

(承建单位)

 

项目(一期)全景鸟瞰图

项目简介:

基地建设项目综合业务用房项目(以下简称“办公基地项目”)建设用地位于某某市区路南侧、路西侧;东邻某某市++院,西接正在建设的++住宅小区,北邻++++中心,南邻已建成的多层住宅小区。

征地面积2+++平方米(合++.++亩),实用地面积+++++平方米(合++.++亩),项目一期拟建1座综合业务用房大楼(框剪结构,地上++层、地下++层)、业务配套用房+(框架结构,地上+层)和业务配套用房+(框架结构,地上+层),总建筑面积+++++平方米(其中:

地上++++++平方米,地下++++平方米)。

综合业务用房大楼用于办公、会议等使用,业务配套用房++为职工食堂及宿舍,业务配套用房++为职工活动中心,配有室内游泳池、更衣室、乒乓球室、羽毛球场及室内篮球场等活动场所。

该工程按“二星”绿色建筑标准设计并施工,现已纳入2++++年某某省绿色建筑示范项目。

本工程太阳能光电建筑一体化项目峰瓦值为300.00kWp。

总平面图:

 

2、项目实施进展情况

目前本项目进展情况:

该项目自20++年+9月正式开工建设,目前综合业务用房大楼主体已施工至++层,在结构封顶之前可按设计要求安装组件电池板的屋面预埋件,使太阳能组件与屋面紧密结合;业务配套用房+、+楼结构已封顶,业务配套用房+是水平屋面结构,可随时设计安装太阳能组件;业务配套用房+部分采用格栅屋架,局部为水平屋面,在主体设计中已按照安装太阳能组件考虑荷载,施工时已在格栅屋架上安装预埋件,可随时设计安装太阳能电池组件。

计划20++年++月主体施工全面完成进入设备安装和装修阶段,预计20++年++月竣工并投入使用。

目前施工现场全景照片:

 

二、示范目标及主要内容

(一)示范目标

为响应国家加快发展新能源产业的政策号召,推进太阳能光伏产业在某某省的发展,加快结构调整,促进节能减排和科普示范,某某省住房和城乡建设厅大力推广应用建筑节能新技术,率先在办公基地项目采用太阳能光电建筑一体化技术。

项目单位计划投资420万元,利用三座单体建筑屋顶无遮挡区域,建设300.00KWp太阳能光电建筑一体化应用示范项目。

办公基地项目周围场地开阔,具备建设光伏发电项目的良好条件;经专业的建筑节能设计计算,本项目建筑达到或超过《公共建筑节能设计标准》(GB50189-2005)规定的节能50%水平,建筑本体满足国家和地方建筑节能标准;该项目由某某有限公司及其技术支持单位某某工程公司具体实施(某某有限公司以帮助社会节约能源为宗旨,提供优质节能产品节能技术服务于社会;某某工程公司为国内太阳能行业著名企业,各项技术达到国际一流水平)。

该项目建成后,将成为节能减排宣传教育基地,对某某市申报可再生能源示范城市具有重要意义,对某某省绿色建筑以及太阳能光电建筑一体化的推广具有重要的示范效应。

(二)主要内容

1、太阳能光电建筑一体化总体方案

本项目包括综合业务用房大楼一座、业务配套用房各一座,为300kWp太阳能光电建筑应用示范工程项目。

本项目利用综合业务大楼及业务配套用房+、+的屋顶建设,太阳能电池板采光面积约2000m2,其中可用于放置太阳能光伏发电板的面积分别为:

综合业务用房大楼屋顶1500m2;业务配套用房A屋顶600m2;业务配套用房B屋顶1000m2。

本项目综合业务用房大楼及业务配套用房+采用普通方式与屋面紧密结合,建设容量为175.44kW;业务配套用房+采取与屋面已有结构紧密结合的形式建设,建设容量为127.2kW,该项目的总装机容量为300kWp。

太阳电池组件方阵由1261块240Wp组件组成,占用屋顶面积约3100m2。

本项目系统所发的电量主要满足综合业务办公大楼及两个业务配套用房内的办公用电和其他设备用电。

各部分使用面积及建设容量见下表:

位置名称

可利用面积(m2)

电池组件数量(块)

容量(KWp)

综合业务用房大楼

1500

591

141.84

业务配套用房+

600

140

33.6

业务配套用房+

1000

530

127.2

合计

3100

1261

300

(1)太阳能电池组件平面布置:

A、综合业务用房大楼屋顶可利用面积为1500平方米,安装591块240Wp多晶硅组件141.84kWp,组件规格为(1634×982×42)mm。

其中140块组件采用25度倾角安装,其余451块组件采用平铺的方式安装在小屋面及屋面构架,具体排布方案如下图:

 

 

B、业务配套用房+楼屋面可利用面积为600平方米,安装140块240Wp多晶组件33.6kWp,组件规格为(1634×982×42)mm,安装倾角为25度。

 

C、业务配套用房+楼屋面可利用面积为1000平方米,安装530块240Wp多晶组件127.2kWp,组件规格为(1634×982×42)mm,组件全部采用与屋面格栅屋架紧密结合的方式,水平铺设安装。

 

(2)投资估算:

本项目利用某某有限公司及其技术支持与设备供应单位某某工程有限公司在太阳能屋顶电站建设上的重大突破和创新技术,拟在办公基地各建筑屋顶等无遮挡区域,建设300KWp太阳能光电建筑一体化示范项目,计划总投资约420万元。

目前各项资金已经全部筹集到位,前期各项工作正在顺利进展中。

(3)环保效益:

本项目年平均发电量为30.8万kWh,按照该系统25年运营期计算,累计发电770万kWh,相当于每年可节省煤炭110吨,减排灰渣约21.7吨,减排二氧化碳约240吨,减排二氧化硫约2.4吨,减排可吸入颗粒物约1.1吨;25年累计可节省煤炭2672吨,减排二氧化碳约5992吨。

实际运行25年后,该系统仍具有发电能力。

2、技术要点

(1)太阳能光电系统:

太阳能光伏发电系统是利用太阳能光伏电池组件将太阳能转换成直流电能,再通过逆变器将直流电逆变成50HZ交流电。

逆变器的输出端通过配电柜与变压器低压端(230/400伏)并联,对负载供电;太阳能光伏并网电站结合数据监控系统,检测太阳能光伏并网电站的运行情况、外界环境情况等,与Internet连接实现电站远程控制、数据共享等,通过建设大型多媒体屏幕实时监测电站运行情况。

本项目采用的太阳能电池方阵由20个太阳能电池组件构成,依据当地的太阳能辐射参数和负载特性,确定太阳能电池方阵的总功率4.8KW。

本项目按照太阳能电池方阵的结构设计要求,组件与支架的连接必须牢固可靠,并能很方便地更换太阳能电池组件,太阳能电池方阵及支架必须能够抵抗120km/h的风力而不被损坏。

支架安装角度固定为25度,以使太阳能电池方阵在设计月份中(即平均日辐射量最差的月份)能够获得最大的发电量;本项目太阳能电池方阵主要安装在屋顶上,所有方阵的紧固件要求有足够的强度,以便将太阳能电池组件可靠地固定在方阵支架上,方阵支架必须与建筑物的主体结构相连接。

(2)逆功率保护技术:

逆功率是指在电网中低一级的电网把没有消耗的电能往高一级的电网输送。

如果出现逆功率对高一级的电网将产生很大的危险,尤其是在高一级电网进行检修等相关的作业时,会给高一级电网的工作人员带来很大的危害。

由于本项目系统为并网系统,考虑到安全方面的因素,太阳能产生的电能必须在本项目使用,不能向上一层电网输入电能,所以在太阳能并网点增加了逆功率保护功能,当光伏并网发电系统检测到有逆功率产生时(逆功率为光伏并网系统额定功率5%时),逆变器能够自动降低功率输出,或部分逆变器与电网断开,光伏并网系统输出功率能够与负载功率动态保持平衡,以保证上层电网的安全。

(3)防孤岛保护技术:

“孤岛效应”指在电网失电情况下发电设备仍作为孤立电源对负载供电这一现象。

“孤岛效应”对设备和人员的安全存在重大隐患,为了避免隐患的出现,逆变器一般采用“防孤岛保护技术”。

本项目逆变器采用了两种“孤岛效应”检测方法,即被动式和主动式两种检测方法。

被动式检测方法指实时检测电网电压的幅值、频率和相位,当电网失电时,会在电网电压的幅值、频率和相位参数上,产生跳变信号,通过检测跳变信号来判断电网是否失电;主动式检测方法指对电网参数产生小干扰信号,通过检测反馈信号来判断电网是否失电,其中一种方法就是通过测量逆变器输出的谐波电流在并网点所产生的谐波电压值,从而得到电网阻抗来进行判断,当电网失电时,会在电网阻抗参数上发生较大变化,从而判断是否出现了电网失电情况。

此外,在并网逆变器检测到电网失电后,会立即停止工作,当电网恢复供电时,并网逆变器并不会立即投入运行,而是需要持续检测电网信号在一段时间(如90秒钟)内完全正常,才重新投入运行。

本项目系统能够并行使用市电和太阳能电池组件阵列作为本项目交流负载的电源,降低了整个系统的负载缺电率。

(4)系统接地技术:

本项目光伏系统采用的接地技术有:

A、防雷接地:

包括避雷针、避雷带以及低压避雷器、外线出线杆上的瓷瓶铁脚还有连接架空线路的电缆金属外皮。

B、工作接地:

逆变器、电压互感器和电流互感器的二次线圈。

C、保护接地:

光伏电池组件机架、控制器、逆变器、以及配电屏外壳、电缆外皮、穿线金属管道的外皮。

D、屏蔽接地:

电子设备的金属屏蔽。

E、接闪器可以采用12mm圆钢,如果采用避雷带,则使用圆钢或者扁钢,圆钢直径≥48mm,厚度不应该小于等于4㎜2。

F、接地装置:

人工垂直接地体宜采用角钢、钢管或者圆钢。

水平接地体宜采用扁钢或者圆钢。

圆钢的直径不应该小于10mm,扁钢截面不应小于100mm2,角钢厚度不宜小于4mm,钢管厚度不小于3-5mm。

人工接地体在土壤中的埋设深度不应小于0.5mm,需要热镀锌防腐处理,在焊接的地方也要进行防腐防锈处理。

G、按照规范GB50057-2010要求安装电涌保护器。

 

三、技术方案

(一)建筑围护结构体系

本项目的太阳能光电建筑一体化示范应用在基地内的三个办公及配套业务用房楼面上面。

1.办公楼的主要结构形式、面积、体形系数、窗墙比和外围护结构等情况

主要结构形式

面积(m2)

体形系数

窗墙比

用途

框—剪结构

17561.2

0.16

东:

0.18;南:

0.32;

西:

0.20;北:

0.24

办公

外围护结构构造、热工性能及其节能情况:

(1)外墙材料采用190厚加气混凝土砌块(λ=0.19W/m2.K),和400mm厚的钢筋混凝土(λ=1.74W/m2.K)。

K=1.59W/(m2·K)。

(2)外窗采用铝合金Low-E中空玻璃(6中透光+9空气+6透明),可见光透射比为0.62,K=3.30W/(m2·K),SC=0.39;

(3)屋面保温材料采用25厚泡沫玻璃板,其特点:

保温性能好且材料燃烧性能等级为A级(λ=0.050W/m2.K),K=1.59W/(m2·K)。

2.配套业务用房*的主要结构形式、面积、体形系数、窗墙比和外围护结构等情况

主要结构形式

面积(m2)

体形系数

窗墙比

用途

框架结构

5117

0.41

东:

0.17;南:

---;

西:

0.14;北:

---

办公的配套设施

外围护结构构造、热工性能及其节能情况:

(1)外墙材料采用190厚加气混凝土砌块(λ=0.19W/m2.K),和400mm厚的钢筋混凝土(λ=1.74W/m2.K)。

K=1.51W/(m2·K)。

(2)外窗采用铝合金Low-E中空玻璃(6中透光+9空气+6透明),可见光透射比为0.62,K=3.30W/(m2·K),SC=0.39;

(3)屋面保温材料采用25厚泡沫玻璃,其特点:

保温性能好且材料燃烧性能等级为A级(λ=0.050W/m2.K),K=1.59W/(m2·K)。

3.配套业务用房*的主要结构形式、面积、体形系数、窗墙比和外围护结构等情况

主要结构形式

面积(m2)

体形系数

窗墙比

用途

框架结构

1481.4

0.30

东:

0.28;南:

--;

西:

0.17;北:

--

运动,休息

外围护结构构造、热工性能及其节能情况:

(1)外墙材料采用190厚加气混凝土砌块(λ=0.19W/m2.K),。

K=1.06W/(m2·K)。

(2)外窗采用铝合金Low-E中空玻璃(6中透光+9空气+6透明),可见光透射比为0.62,K=3.30W/(m2·K),SC=0.39;

(3)屋面保温材料采用25mm厚聚氨酯硬泡沫塑料(λ=0.033W/m2.K),K=1.1W/(m2·K)。

格栅结构的天窗采用铝合金Low-E中空玻璃(6中透光+9空气+6透明),可见光透射比为0.62,K=3.30W/(m2·K),SC=0.39

(二)光电系统技术设计方案

1、设计依据及原则

主要设计依据如下:

1.GB/T18210-2000《晶体硅光伏(PV)方阵I-V特性的现场测量》

2.GB/T18479-2001《地面用光伏(PV)发电系统概述和导则》

3.IEEE1262-1995《光伏组件的测试认证规范》;

4.IEC61727:

2004\IEC61215\IEC61730《电池组件标准》

5.GB/T19939-2005《光伏系统并网技术要求》

6.GB/Z19964-2005《光伏发电站接入电力系统的技术规定》

7.GB/T20046-2006《光伏系统电网接口特性》

8.GB12326-200《电压波动和闪变》

9.GB/T4549-19939《公共电网谐波》

10.GB50009-2001《建筑结构载荷规范》

11.GB50017-2003《钢结构设计规范》

12.GB50057-2010《建筑物防雷设计规范》

13.GB50016-2006《建筑设计防火规范》

14.GB50010-2002《混凝土结构设计规范》

15.GB50007-2002《建筑地基基础设计规范》

16.JGJ79-91《建筑地基处理技术规范》

17.GB50068-2001《建筑结构可靠设计统一标准》

18.GB50011-2001《建筑抗震设计规范》

19.GB50023-2004《建筑工程抗震设防分类标准》

20.JGJ16-2008《民用建筑电气设计规范》

21.GB50194-1993《建设工程施工现场供用电安全规范》

22.GB50293-1999《城市电力规划规范》

23.GB50054-1995《低压配电设计规范》

24.GB50217-2007《电力工程电缆设计规范》

25.GBJ63-1990《电力装置的电测量仪表装置设计规范》

26.GB50052-2009《供配电系统设计规范》

27.GB50212-2007《电力工程电缆设计规范》

28.GB12326—2000《电能质量,电压波动和闪变》

29.GB/T14549—1993《电能质量,公用电网谐波》

30.GB/T15543—1995《电能质量,三相电压允许不平衡度》

31.GB/T15945—1995《电能质量,电力系统频率允许偏差》

设计原则如下:

(1)与建筑的有机结合

由于世界各国对环境和能源短缺的日益关注,可持续发展必将成为今后建筑设计的重要指导思想。

将太阳能光伏发电应用于建筑,并与建筑一体化的新型太阳能建筑已在欧、美和日本等国进行示范,公众反响强烈。

安装在办公基地配套工程建筑的太阳能电池将与建筑结构密切配合,达到光伏建筑一体化应用。

(2)最大限度地获得太阳辐照量

为了增加光伏阵列的输出能量,尽可能地保证光伏组件普照在阳光下,避免光伏组件之间互相遮光,以及其他障碍物遮挡阳光。

(3)减低电缆传输距离,优化设计输配电

为了实现以下目的,从光伏组件到接线箱、接线箱到逆变器以及从逆变器到并网交流配电柜的电力电缆全部按照最短距离。

2、光电建筑一体化设计

太阳能电池是做光电建筑最基本的部件。

国内外光电建筑一体化发展,从示范到推广,从屋顶光伏到建筑集成,太阳能电池已经成为一种新型的建筑材料。

光电建筑在整个太阳能建筑里魅力无比。

由于增加了光伏组件,使得建筑在节能的同时也更具有观赏性。

在国外甚至把光电建筑作为艺术品来建造。

太阳能电池和建筑可以完美结合,在发电的同时也可以做非常好的装饰。

本次设计结合办公基地办公楼及配套用房屋顶的建筑特点,采用多晶硅组件与屋面一体化设计,既保证建筑物的美观,同时又发挥电站的最大效率。

3、并网系统设计

在并网方式上,采用低压电网直接并联,属于“自发自用”用户低压侧并网系统,利用太阳能电池将太阳能转换成直流电能,再通过逆变器将直流电逆变成50赫兹、230/400V的交流电。

逆变器的输出端通过配电柜与市电并联,直接提供给站区负载用电。

同时,太阳能光伏并网系统结合监控系统,检测太阳能光伏并网电站的运行情况、外界环境情况等。

光伏并网发电系统框图

办公基地项目配套建筑在8:

00~20:

00分时段预计用电负荷为2400Kwh,本项目光伏发电系统输出功率300kWp,完全做到即发即用。

序号

建筑物名称

平均负荷

8:

00-9:

00

9:

00-12:

00

12:

00-17:

00

17:

00-20:

00

1

主办公楼

120

700

900

50

2

配套业务用房*

50

150

300

30

3

配套业务用房*

30

50

100

20

4

总计

200

900

1200

100

4、主要产品、部件及性能参数

(1)太阳能电池组件的选择

本项目光伏组件选用某某集团生产的多晶硅240W组件,组件效率约为14.34%。

 

****-****多晶硅组件性能参数表

型式

多晶硅光伏组件

型号

****-***0

尺寸结构

1634×982×42

净重

20.5Kg

使用粘合胶体类型

硅胶

在AM1.5、1000W/㎡的辐照度、25℃的电池温度下的峰值参数

标准功率

240W

峰值电压

30.92V

峰值电流

7.60A

短路电流

8.18A

开路电压

37.23V

系统电压

1000V(Max)

温度范围

-40℃—+85℃

绝缘电阻

≥50MΩ

功率误差范围

±3%

承受冰雹(按照IEC61215)标准测试

25mm直径,23m/s速度

接线盒类型

PV-6063T5

接线盒防护等级

IP65

接线盒连接线长度

≥970mm

组件效率

14.34%

组件的填充因子

74.03%

框架结构使用材料

氧化喷砂处理铝合金边框

a)正常工作条件

1)环境温度:

-40℃-+85℃;

2)相对湿度:

≤95%(25℃);

3)海拔高度:

≤5500m;

4)最大风速:

150km/h。

b)太阳能电池组件性能

1)产品通过TUV认证、VDE、UL、CE、金太阳认证

2)提供的组件功率偏差为±3%。

3)组件的电池上表面颜色均匀一致,无机械损伤,焊点无氧化斑。

4)组件的每片电池与互连条排列整齐,组件的框架整洁无腐蚀斑点。

5)在标准条件下(即:

大气质量AM=1.5,标准光强E=1000W/m2,温度为25±1℃,在测试周期内光照面上的辐照不均匀性≤±5%),太阳电池组件的实际输出功率均大于标称功率。

6)太阳电池片的效率≥16.15%,组件效率≥14.34%。

7)光伏电池组件具有较高的功率/面积比,功率与面积比=146W/㎡。

功率与质量比=10W/Kg,填充因子FF≥0.77。

8)组件2年内功率的衰减<2%,使用10年输出功率下降不超过使用前的10%;组件使用25年输出功率下降不超过使用前的20%。

9)组件使用寿命不低于25年。

10)太阳能电池组件强度满足《IEC61215光伏电池的测试标准》中第10.17节钢球坠落实验的测试要求,并满足以下要求:

撞击后无如下严重外观缺陷:

Ø破碎、开裂、弯曲、不规整或损伤的外表面;

Ø某个电池的一条裂纹,其延伸可能导致组件减少该电池面积10%以上;

Ø在组件边缘和任何一部分电路之间形成连续的气泡或脱层通道;

Ø表面机械完整性,导致组件的安装和/或工作都受到影响。

Ø标准测试条件下最大输出功率的衰减不超过实验前的5%。

绝缘电阻应满足初始实验的同样要求。

11)太阳能电池组件防护等级IP65。

12)连接盒采用满足IEC标准的电气连接,采用工业防水耐温快速接插,防紫外线阻燃电缆。

13)1组件的封层中没有气泡或脱层在某一片电池与组件边缘形成一个通路,气泡或脱层的几何尺寸和个数符合IEC61215规定。

14)组件在外加直流电压2000V时,保持1分钟,无击穿、闪络现象。

15)绝缘性能:

对组件施加1000V的直流电压,测量其绝缘电阻应不小于100MΩ。

16)组件采用EVA、玻璃等层压封装,EVA的交联度大于80%,EVA与玻璃的剥离强度大于30N/cm2。

EVA与组件背板剥离强度大于10N/cm2。

17)光伏电池受光面有较好的自洁能力;表面抗腐蚀、抗磨损能力满足IEC61215要求。

18)边框与电池片之间应有足够距离,确保组件的绝缘、抗湿性和寿命。

19)为保证光伏电池组件及整个发电系统安全可靠运行,提供光伏电池组件有效的防雷接地措施。

20)组件背面统一地方粘贴产品标签,标签上注明产品商标、规格、型号及产品参数,标签保证能够抵抗二十年以上的自然环境的侵害而不脱落、标签上的字迹不会被轻易抹掉。

产品包装符合相应国标要求,外包装坚固,内部对组件有牢靠的加固措施及防撞措施。

全包装箱在箱面上标出中心位置、装卸方式、储运注意标识等内容。

太阳电池组件伏安特性曲线:

太阳电池组件伏辐照度、温度性曲线:

(2)逆变器的选择

逆变器技术要求:

光伏并网逆变器是光伏发电系统中的关键设备,对于提高光伏系统效率和可靠性具有举足轻重的作用。

光伏并网逆变器的选型主要应考虑以下几个问题:

●性能可靠,效率高

光伏发电系统目前的发电成本较高,逆变器是光伏并网系统中的关键设备,如果在发电过程中逆变器自身消耗能量过多或逆变出现故障,必然导致系统总发电量及经济性能的下降,因此要求逆变器的高可靠性、高效率等非常必要,并具有根据光伏组件当前的运行状况输出最大效率(MPPT)点的跟踪功能。

●直流输入电压具有较宽的适应范围

由于光伏组件的输出电压随光照强度和温度而变化,这就要求逆变电源必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压稳定。

●具有严格保护功能

并网逆变器应具有交流过压、欠压保护,超频、欠频保护,高温保护,交流及直流的过流保护,直流过压保护,防孤岛保护等保护功能。

●波形畸变小,功率因数高

大型光伏发电并网运行时,为避免对公共电网的电力污染,要求逆变电源输出正弦波,电流波形必须与外电网一致,波形畸变小于5%,高次谐波含量小于3%,功率因数接近于1。

●监控和数据采集功能齐全

逆变器应有多种通讯接口进行数据采集并发送到中控室,并且具备完善的配套软件或硬件用于对整个电站的数据进行显示、存储并分析。

●满足国家电网的接入规定

根据国家电网公司新出台的光伏电站接入电网技术规定(试行版),逆变

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1