第一节单容自衡水箱液位特性测试实验.docx

上传人:b****3 文档编号:3815130 上传时间:2022-11-25 格式:DOCX 页数:14 大小:1.11MB
下载 相关 举报
第一节单容自衡水箱液位特性测试实验.docx_第1页
第1页 / 共14页
第一节单容自衡水箱液位特性测试实验.docx_第2页
第2页 / 共14页
第一节单容自衡水箱液位特性测试实验.docx_第3页
第3页 / 共14页
第一节单容自衡水箱液位特性测试实验.docx_第4页
第4页 / 共14页
第一节单容自衡水箱液位特性测试实验.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

第一节单容自衡水箱液位特性测试实验.docx

《第一节单容自衡水箱液位特性测试实验.docx》由会员分享,可在线阅读,更多相关《第一节单容自衡水箱液位特性测试实验.docx(14页珍藏版)》请在冰豆网上搜索。

第一节单容自衡水箱液位特性测试实验.docx

第一节单容自衡水箱液位特性测试实验

第一节单容自衡水箱液位特性测试实验

一、实验目的

1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;

2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;

3.掌握同一控制系统采用不同控制方案的实现过程。

二、实验设备

1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;

2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;

3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;

4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;

5.SA-41挂件一个、CP5611专用网卡及网线;

6.SA-42挂件一个、PC/PPI通讯电缆一根。

三、实验原理

所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图2-1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。

液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。

若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。

根据动态物料平衡关系有

Q1-Q2=A

(2-1)

将式(2-1)表示为增量形式

ΔQ1-ΔQ2=A

(2-2)

式中:

ΔQ1,ΔQ2,Δh——分别为偏

离某一平衡状态的增量;

A——水箱截面积。

在平衡时,Q1=Q2,

=0;当Q1

发生变化时,液位h随之变化,水箱出图2-1单容自衡水箱特性测试系统

口处的静压也随之变化,Q2也发生变化(a)结构图(b)方框图

由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。

但为了简化起见,经线性化处理后,可近似认为Q2与h成正比关系,而与阀F1-11的阻力R成反比,即

ΔQ2=

或R=

(2-3)

式中:

R——阀F1-11的阻力,称为液阻。

将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q2,即可得到单容水箱的数学模型为

W0(s)=

=

(2-4)

式中T为水箱的时间常数,T=RC;K为放大系数,K=R;C为水箱的容量系数。

若令Q1(s)作阶跃扰动,即Q1(s)=

,x0=常数,则式(2-4)可改写为

H(s)=

×

=K

-

对上式取拉氏反变换得

h(t)=Kx0(1-e-t/T)(2-5)

当t—>∞时,h(∞)-h(0)=Kx0,因而有

K=

(2-6)

当t=T时,则有

h(T)=Kx0(1-e-1)=0.632Kx0=0.632h(∞)(2-7)

式(2-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2(a)所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。

也可由坐标原点对响应曲线作切线OA,切线与稳态值交点A所对应的时间就是该时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。

 

图2-2单容水箱的阶跃响应曲线

如果对象具有滞后特性时,其阶跃响应曲线则为图2-2(b),在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。

图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得的传递函数为:

H(S)=

(2-8)

四、实验内容与步骤

本实验选择下水箱作为被测对象(也可选择上水箱或中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制

1.将“SA-12智能调节仪控制”挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。

将“LT3下水箱液位”钮子开关拨到“ON”的位置。

图2-3仪表控制单容水箱特性测试实验接线图

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表及电动调节阀上电。

3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.在上位机监控界面中将智能仪表设置为“手动”控制,并将输出值设置为一个合适的值,此操作需通过调节仪表实现。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。

6.待下水箱液位平衡后,突增(或突减)智能仪表输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值,液位的响应过程曲线将如图2-4所示。

 

图2-4单容下水箱液位阶跃响应曲线

7.根据前面记录的液位值和仪表输出值,按公式(2-6)计算K值,再根据图2-2中的实验曲线求得T值,写出对象的传递函数。

(二)、远程数据采集控制

1.将“SA-22远程数据采集模拟量输出模块”、“SA-23远程数据采集模拟量输入模块”挂件挂到屏上,并将挂件上的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。

将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给智能采集模块及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开上位机MCGS组态环境,打开“远程数据采集系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.以下步骤请参考前面“

(一)智能仪表控制”的步骤4~7。

图2-5远程数据采集控制单容水箱特性测试实验接线图

(三)、DCS分布式控制

1.按照第一章图1-6用网线和交换机连接操作员站(网卡IP设为128.0.0.2)和服务器(A网卡IP设为128.0.0.1),以及服务器(B网卡设为168.0.0.1)和主控单元,将“SA-31FM148现场总线远程I/O模块”、“SA-33FM151现场总线远程I/O模块”挂件挂到屏上,并将挂件的通讯线接头插入屏内Profibus-DP总线接口上,将控制屏左侧Profibus-DP总线连接到主控单元DP口,并按照下面的控制屏接线图连接实验系统。

将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给现场总线I/O模块及压力变送器上电,打开主控单元电源。

启动服务器,在工程师站的组态中选择“单回路控制系统”工程进行编译下装,然后重启服务器。

3.启动操作员站,打开主菜单,点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

在流程图的液位测量值上点击鼠标左键,弹出PID窗口,将PID设为手动控制,并调节其输出为一适当的值。

4.按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

5.以下步骤请参考前面“

(一)智能仪表控制”的步骤5~7。

图2-6DCS分布式控制单容水箱特性测试实验接线图

(四)、S7-200PLC控制

1.将“SA-42S7-200PLC控制”挂件挂到屏上,并用PC/PPI通讯电缆线将S7-200PLC连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。

将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给S7-200PLC及电动调节阀上电。

3.打开Step7-Micro/WIN32软件,并打开“S7-200PLC”程序进行下载,然后将S7-200PLC置于运行状态,然后运行MCGS组态环境,打开“S7-200PLC控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.以下步骤请参考前面“

(一)智能仪表控制”的步骤4~7。

图2-7S7-200PLC控制单容水箱特性测试实验接线图

(五)、S7-300PLC控制

1.将“SA-41S7-300PLC控制”挂件挂到屏上,并用MPI通讯电缆线将S7-300PLC连接到计算机CP5611专用网卡,并按照下面的控制屏接线图连接实验系统。

将“LT3下水箱液位”钮子开关拨到“ON”的位置。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给S7-300PLC及压力变送器上电,按下启动按钮,合上单相Ⅰ空气开关,给电动调节阀上电。

3.打开Step7软件,打开“S7-300”程序进行下载,然后将S7-300PLC置于运行状态,然后运行WinCC组态软件,打开“S7-300PLC控制系统”工程,然后激活WinCC运行环境,在主菜单中点击“实验一、单容自衡水箱对象特性测试”,进入实验一的监控界面。

4.以下步骤请参考前面“

(一)智能仪表控制”的步骤4~7。

图2-8S7-300PLC控制单容水箱特性测试实验接线图

五、实验报告要求

1.画出单容水箱液位特性测试实验的结构框图。

2.根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。

六、思考题

1.做本实验时,为什么不能任意改变出水阀F1-11开度的大小?

2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?

3.如果采用中水箱做实验,其响应曲线与下水箱的曲线有什么异同?

并分析差异原因。

第一节系统概述

一、概述

“THSA-1型过控综合自动化控制系统实验平台”是由实验控制对象、实验控制台及上位监控PC机三部分组成。

它是本企业根据工业自动化及其他相关专业的教学特点,并吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证而推出的一套全新的综合性实验装置。

本装置结合了当今工业现场过程控制的实际,是一套集自动化仪表技术、计算机技术、通讯技术、自动控制技术及现场总线技术为一体的多功能实验设备。

该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈-反馈控制,滞后控制、比值控制,解耦控制等多种控制形式。

本装置还可根据用户的需要设计构成AI智能仪表,DDC远程数据采集,DCS分布式控制,PLC可编程控制,FCS现场总线控制等多种控制系统,它既可作为本科,专科,高职过程控制课程的实验装置,也可为教师、研究生及科研人员对复杂控制系统、先进控制系统的研究提供一个物理模拟对象和实验平台。

学生通过本实验装置进行综合实验后可掌握以下内容:

1.传感器特性的认识和零点迁移;

2.自动化仪表的初步使用;

3.变频器的基本原理和初步使用;

4.电动调节阀的调节特性和原理;

5.测定被控对象特性的方法;

6.单回路控制系统的参数整定;

7.串级控制系统的参数整定;

8.复杂控制回路系统的参数整定;

9.控制参数对控制系统的品质指标的要求;

10.控制系统的设计、计算、分析、接线、投运等综合能力培养;

11.各种控制方案的生成过程及控制算法程序的编制方法。

二、系统特点

●真实性、直观性、综合性强,控制对象组件全部来源于工业现场。

●被控参数全面,涵盖了连续性工业生产过程中的液位、压力、流量及温度等典型参数。

●具有广泛的扩展性和后续开发功能,所有I/O信号全部采用国际标准IEC信号。

●具有控制参数和控制方案的多样化。

通过不同被控参数、动力源、控制器、执行器及工艺管路的组合可构成几十种过程控制系统实验项目。

●各种控制算法和调节规律在开放的实验软件平台上都可以实现。

实验数据及图表在上位机软件系统中很容易存储及调用,以便实验者进行实验后的比较和分析。

●多种控制方式:

可采用AI智能仪表控制、DCS分布式控制、S7-200或S7-300PLC可编程控制、DDC远程数据采集控制等多种控制方式。

●充分考虑了各大高校自动化专业的大纲要求,完全能满足教学实验、课程设计、毕业设计的需要,同时学生可自行设计实验方案,进行综合性、创造性过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。

三、实验装置的安全保护体系

1.三相四线制总电源输入经带漏电保护装置的三相四线制断路器进入系统电源之后又分为一个三相电源支路和三个不同相的单相支路,每一支路都带有各自三相、单相断路器。

总电源设有三相通电指示灯和380V三相电压指示表,三相带灯熔断器作为断相指示。

2.控制屏上装有一套电压型漏电保护和一套电流型漏电保护装置。

3.控制屏设有服务管理器(即定时器兼报警记录仪),为学生实验技能的考核提供一个统一的标准。

4.各种电源及各种仪表均有可靠的自保护功能。

5.强电接线插头采用封闭式结构,以防止触电事故的发生。

6.强弱电连接线采用不同结构的插头、插座,防止强弱电混接。

 

第二节THSA-1型过控综合自动化控制系统对象

实验对象总貌图如图1-1所示:

图1-1实验对象总貌图

本实验装置对象主要由水箱、锅炉和盘管三大部分组成。

供水系统有两路:

一路由三相(380V恒压供水)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及手动调节阀组成。

一、被控对象

由不锈钢储水箱、(上、中、下)三个串接有机玻璃水箱、4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)、盘管和敷塑不锈钢管道等组成。

1.水箱:

包括上水箱、中水箱、下水箱和储水箱。

上、中、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。

上、中水箱尺寸均为:

D=25cm,H=20cm;下水箱尺寸为:

D=35cm,H=20cm。

水箱结构独特,由三个槽组成,分别为缓冲槽、工作槽和出水槽,进水时水管的水先流入缓冲槽,出水时工作槽的水经过带燕尾槽的隔板流入出水槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。

水箱底部均接有扩散硅压力传感器与变送器,可对水箱的压力和液位进行检测和变送。

上、中、下水箱可以组合成一阶、二阶、三阶单回路液位控制系统和双闭环、三闭环液位串级控制系统。

储水箱由不锈钢板制成,尺寸为:

长×宽×高=68cm×52㎝×43㎝,完全能满足上、中、下水箱的实验供水需要。

储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。

2.模拟锅炉:

是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。

做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。

冷却层和加热层都装有温度传感器检测其温度,可完成温度的定值控制、串级控制,前馈-反馈控制,解耦控制等实验。

3.盘管:

模拟工业现场的管道输送和滞后环节,长37米(43圈),在盘管上有三个不同的温度检测点,它们的滞后时间常数不同,在实验过程中可根据不同的实验需要选择不同的温度检测点。

盘管的出水通过手动阀门的切换既可以流入锅炉内胆,也可以经过涡轮流量计流回储水箱。

它可用来完成温度的滞后和流量纯滞后控制实验。

4.管道及阀门:

整个系统管道由敷塑不锈钢管连接而成,所有的手动阀门均采用优质球阀,彻底避免了管道系统生锈的可能性。

有效提高了实验装置的使用年限。

其中储水箱底部有一个出水阀,当水箱需要更换水时,把球阀打开将水直接排出。

二、检测装置

1.压力传感器、变送器:

三个压力传感器分别用来对上、中、下三个水箱的液位进行检测,其量程为0~5KP,精度为0.5级。

采用工业用的扩散硅压力变送器,带不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

采用标准二线制传输方式,工作时需提供24V直流电源,输出:

4~20mADC。

2.温度传感器:

装置中采用了六个Pt100铂热电阻温度传感器,分别用来检测锅炉内胆、锅炉夹套、盘管(有3个测试点)以及上水箱出口的水温。

Pt100测温范围:

-200~+420℃。

经过调节器的温度变送器,可将温度信号转换成4~20mA直流电流信号。

Pt100传感器精度高,热补偿性较好。

3.流量传感器、变送器:

三个涡轮流量计分别用来对由电动调节阀控制的动力支路、由变频器控制的动力支路及盘管出口处的流量进行检测。

它的优点是测量精度高,反应快。

采用标准二线制传输方式,工作时需提供24V直流电源。

流量范围:

0~1.2m3/h;精度:

1.0%;输出:

4~20mADC。

三、执行机构

1.电动调节阀:

采用智能直行程电动调节阀,用来对控制回路的流量进行调节。

电动调节阀型号为:

QSVP-16K。

具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作方便等优点,电源为单相220V,控制信号为4~20mADC或1~5VDC,输出为4~20mADC的阀位信号,使用和校正非常方便。

2.水泵:

本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。

泵体完全采用不锈钢材料,以防止生锈,使用寿命长。

本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动。

3.电磁阀:

在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用。

电磁阀型号为:

2W-160-25;工作压力:

最小压力为0Kg/㎝2,最大压力为7Kg/㎝2;工作温度:

-5~80℃;工作电压:

24VDC。

4.三相电加热管:

由三根1.5KW电加热管星形连接而成,用来对锅炉内胆内的水进行加温,每根加热管的电阻值约为50Ω左右。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 电子电路

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1