万有引力定律在天文学上应用5.docx

上传人:b****6 文档编号:3805299 上传时间:2022-11-25 格式:DOCX 页数:18 大小:143.56KB
下载 相关 举报
万有引力定律在天文学上应用5.docx_第1页
第1页 / 共18页
万有引力定律在天文学上应用5.docx_第2页
第2页 / 共18页
万有引力定律在天文学上应用5.docx_第3页
第3页 / 共18页
万有引力定律在天文学上应用5.docx_第4页
第4页 / 共18页
万有引力定律在天文学上应用5.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

万有引力定律在天文学上应用5.docx

《万有引力定律在天文学上应用5.docx》由会员分享,可在线阅读,更多相关《万有引力定律在天文学上应用5.docx(18页珍藏版)》请在冰豆网上搜索。

万有引力定律在天文学上应用5.docx

万有引力定律在天文学上应用5

万有引力定律在天文学上的应用

  ●本节教材分析

  这节课通过对一些天体运动的实例分析,使学生了解:

通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量专门大,万有引力将起决定性作用,对天文学的进展起了专门大的推动作用,其中一个重要的应用就是计算天体的质量.

  在讲课时,应用万有引力定律有两条思路要交待清楚.

  1.把围绕天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题.

  2.地面周围物体与地球间的万有引力约等于物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题.

  本节内容是这一章的重点,是万有引力定律在实际中的具体应用.利用万有引力定律除可求出中心天体的质量外还可发觉未知天体.

  ●教学目标

  一、知识目标

  1.了解行星绕恒星运动及卫星绕行星运动的一路点:

万有引力作为行星、卫星圆周运动的向心力.

  2.了解万有引力定律在天文学上有重要应用.

  3.会用万有引力定律计算天体的质量.

   二、能力目标

  通过万有引力定律在实际中的应用,培育学生理论联系实际的能力.

   三、德育目标

  利用万有引力定律能够发觉未知天体,让学生知道理论来源于实践,反过来又能够指导实践的辩证唯物主义观点.

   ●教学重点

  1.人造卫星、月球绕地球的运动;行星绕太阳的运动的向心力是由万有引力提供的.

  2.会用已知条件求中心天体的质量.

   ●教学难点

  按照已知条件求中心天体的质量.

   ●教学方式

  分析推理法、讲练法.

   ●教学用具  有关练习题的投影片、投影仪.

   ●课时安排  1课时

   ●教学进程

  本节课的学习目标

  1.利用万有引力等于向心力求出中心天体的质量.

  2.了解万有引力定律在天文学上的应用.

  学习目标完成进程

   一、导入新课

  上节课咱们一路窗习了万有引力常量的测定.此刻请同窗们回忆下面几个问题:

  1.卡文迪许用什么装置来测定万有引力常量?

其实验原理是什么?

  2.为何扭秤装置能测定彼此作用很小的万有引力,其巧妙的地方安在?

  回忆上节所学,找出问题答案.

  1.卡文迪许用扭秤装置来测定引力常量.其实验原理是力矩平衡.

  2.扭秤装置所以能测定很小的万有引力,其根本原因是通过小平面镜及T型架的横杆对万有引力的作用效果进行了放大.

  万有引力常量的测出,使万有引力定律对天文学的进展起了专门大的推动作用.这节课咱们就一路来学习万有引力定律在天文学上的应用.

   二、新课教学

  

(一)天体质量的计算

  A.基础知识

  请同窗们阅读课文第一部份--天体质量的计算.同时考虑下列问题.

  1.万有引力定律在天文学上有何用途?

  2.应用万有引力定律求解天体质量的大体思路是什么?

  3.求解天体质量的方程依据是什么?

  学生阅读课文第一部份,从课文中找出相应的答案.

  1.当测定出万有引力常量后,咱们即可应用万有引力定律计算天体的质量.使以前看似不可能的事变成现实.

  2.应用万有引力定律求解天体质量的大体思路是:

按照围绕天体的运动情形,求出其向心加速度,然后按照万有引力充当向心力,进而列方程求解.

  3.之前面的学习明白,天体之间存在着彼此作用的万有引力,而行星(或卫星)都在绕恒星(或行星)做近似圆周的运动,而物体做圆周运动时合力充当向心力,故对于天体所做的圆周运动的动力学方程只能是万有引力充当向心力,这也是求解中心天体质量时列方程的本源所在.

  B.深切探讨

  请同窗们结合课文知识和前面所学匀速圆周运动的知识,加以讨论、综合.然后试探下列问题.

  1.天体实际做何运动?

而咱们通常能够为做什么运动?

  2.描述匀速圆周运动的物理量有哪些?

  3.按照围绕天体的运动情形求解其向心加速度有几种求法?

  4.应用天体运动的动力学方程--万有引力充当向心力求出的天体质量有几种表达式?

各是什么?

各有什么特点?

  5.应用此方式可否求出围绕天体的质量?

  分组讨论,得出答案.

  1.天体实际运动是沿椭圆轨道运动的,而咱们通常情形下能够把它的运动近似处置为圆形轨道,即以为天体在做匀速圆周运动.

  2.在研究匀速圆周运动时,为了描述其运动特征,咱们引进了线速度v,角速度ω,周期T三个物理量.

  3.按照围绕天体的运动状况,求解向心加速度有三种求法.即:

  a.a心=

  b.a心=ω2·r

  c.a心=4π2r/T2

  4.应用天体运动的动力学方程--万有引力充当向心力,结合圆周运动向心加速度的三种表述方式可得三种形式的方程,即

  a.F引=G

=F心=ma心=m

  即:

G

  b.F引=G

=F心=ma心=mω2r

  即:

G

=mω2·r②

  c.F引=G

=F心=ma心=m

  即:

G

=m

  从上述动力学方程的三种表述中,可取得相应的天体质量的三种表达形式:

  a.M=v2r/G.

  b.M=ω2r3/G.

  c.M=4π2r3/GT2.

  上述三种表达式别离对应在已知围绕天体的线速度v,角速度ω,周期T时求解中心天体质量的方式.

  以上各式中M表示中心天体质量,m表示围绕天体质量,r表示两天体间距离,G表示万有引力常量.

  5.从以上各式的推导进程可知,利用此法只能求出中心天体的质量,而不能求出围绕天体的质量,因为围绕天体的质量同时出此刻方程的两边,已被约掉.

  C.教师总结

  从上面的学习可知,在应用万有引力定律求解天体质量时,只能求解中心天体的质量,而不能求解围绕天体的质量.而在求解中心天体质量的三种表达式中,最常常利用的是已知周期求质量的方程.因为围绕天体运动的周期比较容易测量.

  之前面的学习咱们明白,当物体静止在地面上时,万有引力同时产生两个作用效果,一是物体的重力,一是物体随地自转的向心力,而随地自转的向心力超级小,故有:

F引

mg

  而当物体绕地球运转时,再也不有随地自转的向心力.现在有:

F引=mg

  综上所述,咱们可知,

F引=mg

  这也是这一章中,除动力学方程外的又一重要方程.

  既然万有引力能够充当向心力,且它又等于物体的重力,所以咱们即可取得另一个重要的方程:

mg=F心

  综合以上,在这一章中咱们所用的方程总共有三个,即:

F引=F心

F引=mg

mg=F心

  D.基础知识应用

  1.求解中心天体质量时,列方程的依据是________.

  2.把地球绕太阳公转看做是匀速圆周运动轨道,平均半径为×108km,已知引力常量为:

G=×10-11N·m2/kg2,则可估算出太阳的质量大约是多少千克?

(结果取一名有效数字)

  参考答案:

  1.万有引力充当向心力

  2.2×1030kg

  分析:

题干给出了轨道的半径,虽然没有给出地球运转的周期,但日常生活常识告知咱们:

地球绕太阳一周为365天.

  故:

T=365×24×3600s=×107s

  由万有引力充当向心力可得:

  G

=m

  故:

M=

    =

kg

    =2×1030kg

  

(二)发觉未知天体

  A.基础知识

  请同窗们阅读课文第二部份--发觉未知天体,考虑以下问题:

  1.应用万有引力定律除可估算天体质量外,还能够在天文学上起什么作用?

  2.应用万有引力定律发觉了哪些行星?

  阅读课文,从课文中找出相应的答案:

  1.应用万有引力定律还能够用来发觉未知的天体.

  2.海王星、冥王星就是应用万有引力定律发觉的.

  B.深切探讨

  人们是如何应用万有引力定律来发觉未知天体的?

  人们在长期的观察中发觉天王星的实际运转轨道与应用万有引力定律计算出的轨道总存在必然的误差,所以怀疑在天王星周围还可能存在未知行星,然后应用万有引力定律,结合对天王星的观测资料,便计算出了另一颗行星的轨道,进而在计算的位置上观察到新的行星.

  C.教师总结

  万有引力定律的发觉,为天文学的进展起到了踊跃的作用,用它能够来计算天体的质量,同时还能够来发觉未知天体.

  D.基础知识应用

  1.太阳系的第八颗行星--海王星是________国的________于________(时刻)发觉的.

  2.太阳系的第九颗行星--冥王星是________(时刻),应用万有引力定律发觉的.

  参考答案:

  1.德;加勒;1846年9月23日

  2.1930年3月14日

   三、知识反馈

  1.按照观察,在土星外层有一个环,为了判断是土星的持续物仍是小卫星群,可测出环中各层的线速度v与该层到土星中心的距离R之间的关系.下列判断正确的是( )

  A.若v与R成正比,则环是持续物

  B.若v2与R成正比,则环是小卫星群

  C.若v与R成反比,则环是持续物

  D.若v2与R成反比,则环是小卫星群

  2.已知地球的半径为R,地面的重力加速度为g,万有引力常量为G,若是不考虑地球自转的影响,那么地球的平均密度的表达式为________.

  3.某人在某一星球上以速度v竖直上抛一物体,经时刻t落回抛出点,已知该星球的半径为R,若要在该星球上发射一颗靠近该星运转的人造星体,则该人造星体的速度大小为多少?

  4.一艘宇宙飞船绕一个不知名的、半径为R的行星表面飞行,围绕一周飞行时刻为T.求该行星的质量和平均密度.

  参考答案:

  1.AD  2.3g/4πGR

  3.星球表面的重力加速度g=

  人造星体靠近该星球运转时:

  mg=G

=m

(M:

星球质量,m:

人造星体质量)

  所以v′=

  4.设宇宙飞船的质量为m,行星的质量为M.宇宙飞船围绕行星的中心做匀速圆周运动.

  G

=m(

)2R

  所以M=

  又v=

πR3

  所以

  ρ=

 

  四、小结

  学习本节的解题思路如下:

  F引=mg.

  mg=F心

 

  五、作业

  1.阅读本节内容.

  2.讲义P110

(1)

  3.试探题:

已知地球的半径为R,质量为M地,月球球心到地球球心的距离r月地=60R=×108m,月球绕地球运行周期T=天,地球对物体的重力加速度g0=m/s2,试证明地球对月球的引力和地球对其周围物体的引力是同性质的力,都是万有引力.

  参考答案:

  月球绕地球做半径为r月地的匀速圆周运动,若是提供月球做匀速圆周运动的向心力与地球对物体的引力是同性质的力,则由牛顿运动定律可得月球绕地球做圆周运动的向心加速度a月为:

  地球上物体的重力加速度g为

  由月球绕地球做匀速圆周运动所需的向心加速度公式可知:

  a月′=ω2r月地=(

)2·r月地

    =(

)2××108m/s2=×10-3m/s2

  已知地球表面的重力加速度g0=m/s2

  

  由此可知,由月球和地球周围的物体绕地球做匀速圆周运动所需的向心加速度之比,跟由同性质的万有引力对它们提供的向心力所取得的向心加速度之比近似相等.所以,地球对月球的引力跟地球对其周围物体的引力是同性质的力,都是万有引力.

 

  六、板书设计

 

  七、本节优化训练设计

  1.(1997年全国)某行星的一颗小卫星在半径为r的圆轨道上绕行星运动,运行的周期是T,已知引力常量为G,那个行星的质量是________.

  2.(2001年春天)两个星球组成双星,它们在彼此之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动,现测得两星中心距离为R,其运动周期为T,求两星的总质量.

  3.行星的平均密度是ρ,靠近行星表面的卫星的周期是T,试证明ρT2为一个常数.

  4.假想有一宇航员在某行星的极地上着陆时,发觉物体在本地的重力是同一物体在地球上重力的倍,而该行星一日夜的时刻与地球相同,物体在它赤道上时恰好完全失重.若存在如此的星球,它的半径R应多大?

  5.质量为m的物体在离地某高处的重力是它在地表周围所受重力的一半,求物体所处的高度.(已知地球的平均半径为R)

  参考答案:

  1.分析:

本题考查应用万有引力定律计算天体质量,行星对卫星的引力提供卫星做匀速圆周运动所需的向心力.

  解:

由于 G

=m

r,得M=

  2.分析:

此为天体运动的双星问题,除两星间的作用外,其他天体对其不产生影响.

  两星球周期相同,有一路的圆心,且间距不变,其空间散布如右图所示.

  解:

设两星质量别离为M1和M2,都绕连线上O点做周期为T的圆周运动,两星到圆心的距离别离为L1和L2,由于万有引力提供向心力.

  故有 G

                         ①

  G

  由几何关系知:

L1+L2=R③

  联立解得 M1+M2=

  3.分析:

将行星看做一个球体,卫星绕行星做匀速圆周运动的向心力由万有引力提供.

  解:

设半径为R,则密度ρ与质量M、体积V的关系为

M=ρV=ρ

πR3

  对卫星,万有引力提供向心力

  

  整理得ρT2=

为一常量.

  4.分析:

题设条件指出,物体在赤道上恰好完全失重,这是由于该星球自转所造成的.在赤道上平面物体所受星球的万有引力恰好等于它随星球

  自转所需向心力.随物体向星球极地移动,其视重将增大.在极地位置,物体所需向心力为零.

  解:

设行星的半径为R,在赤道上质量为m的物体随星体自转,物体受力如上图所示,按照牛顿第二运动定律得mg′-FN=mω2R

  依题FN=0,所以g′=ω2R.

  在极地地域物体重力仅为地球上重力的倍,可知g′=

  自转周期与地球相同,即T′=T=×104s,

  可知该星球半径为

  

  5.分析:

本题考查地球表面物体所受重力的大小与万有引力之间的关系.物体所受的重力可近似看成等于地球对它的万有引力.

  解:

在地面周围有G1=G

  在离地h高度处有 G2=G

  由题意知

=2,

  解得:

h=(

-1)R.

 

  ●备课资料

 

  一、天体密度的计算

  要想计算天体的密度,设天体半径已知,即可取得天体的体积,再求得天体的质量、天体的密度就可求得.

  求天体质量时,第一应以此天体作为中心天体,具体求解时可有两条思路:

  a.F引=F向,b.F引

mg.

  a.F引=F向,即G

r,得:

M=

(其中:

M为中心天体质量,m为围绕天体质量,T为围绕天体的绕行周期,r为围绕天体的轨道半径)

  设中心天体的半径为R,则其体积为V=

πR3.

  所以ρ=

  若是围绕体在中心体表面运行,则r=R,

  所以ρ=

  b.F引

mg,即G

=mg,得M=

(其中:

g为中心体表面或周围的重力加速度)

  设中心体半径为R,则体积V=

πR3

  所以ρ=

 

  二、科学家发觉太阳系第十大行星

  英国天文学家约翰·默里博士可能发觉了太阳系第十大行星.

  这颗奇异的行星极为遥远,与目前已知太阳系最远的行星冥王星相较,它的公转轨道大约比冥王星远1000倍.这颗行星与太阳的距离是地球抵达太阳距离的3万倍.默里博士的那个发觉源自彗星理论,每一颗彗星都是受外力驱动才进入太阳系的,以致被咱们观察到.默里博士研究了13颗彗星的运行轨道后,他以为存在着一个庞大物体的作用,将那些彗星送入了此刻的运行轨道.

  这颗行星可能是在别处诞生的一颗新星,在银河系漫游时被太阳系的行星系统捕捉到了.这颗肉眼观测不到的行星体积是已知太阳系最大行星木星的几倍以上.

  这颗行星围绕太阳运行一周需要600万年的时刻.这一速度能够解释人们以前为何没有发觉它的原因:

它的移动速度极为缓慢.

 

  三、对天体运动问题的分析

  

(一)万有引力定律与天体圆运动问题的分析方式

  1.万有引力定律

  若两个质量别离为m和M的质点相距r,则其间彼此作用的万有引力的大小为F=GmM/r2①.应该明确的是:

(1)①式中的G被称为引力常量,其值为G=×10-11N·m2/kg2.

(2)①式适用于两个质点间万有引力大小的计算,而对于两个质量散布均匀的球体间的万有引力大小的计算,也可用①式,只是式中的r应理解为两球心间的距离.

  2.天体圆运动问题的分析方式

  对于那些在万有引力作用下,围绕某中心天体(M)做圆运动的天体(m)来讲,其圆运动问题的分析应牢牢把握住“引力充当向心力”这一要点来进行,即GmM/r2=man.式中的向心加速度an=v2/r=rω2=4π2r/T2.至于an应取何种表达形式,应依具体问题来肯定.

  已知月球绕地球转动周期为T,轨道近似为圆,月、地间距离为r.则地球的质量M为多大?

  分析与解 对于这种典型的“天体圆运动问题”的分析,咱们把握住“引力充当向心力”的分析要点,同时考虑到题设条件中给出了周期T,因此能够用T来表示向心加速度.于是有GmM/r2=4π2rm/T2.可解得地球质量为M=4π2r3/GT2.

  

(二)开普勒行星运动定律与天体椭圆运动问题的分析方式

  1.开普勒行星运动定律

  第必然律:

行星沿椭圆轨道绕太阳运动,太阳在椭圆轨道的一个核心上.

  第二定律:

行星与太阳的连线在相等的时刻内扫过相等的面积.即vrsinθ=常量①.式中v为行星的运动速度,r为从太阳引向行星的矢径,θ则为速度与矢径之间的夹角.

  第三定律:

行星绕太阳做椭圆运动的公转周期的平方与轨道半长轴的立方成正比.即T2/R3=4π2/GM②.式中G为引力常量,M则为太阳的质量.

  2.天体椭圆运动问题的分析方式

  若把适用于行星绕太阳做椭圆运动的开普勒定律推行到一般的绕中心天体(M)做椭圆运动的天体(m)上,开普勒定律的形式不变.只是现在①式中的“常量”成了一个与新的中心天体相关的常量;②式中的M也成了新的中心天体的质量而再也不是太阳的质量了.于是,对于一般的天体的椭圆运动问题的分析,则能够依托推行了的开普勒定律.固然,在一些较为特殊的天体椭圆运动问题中,有时也能够利用“位置的特殊性”和“轨道的对称性”而借助于万有引力定律来分析.

  如图所示,卫星绕质量为M的地球做椭圆运动,在近地址和远地址处与地心别离相距a和b,则卫星在通过近地址和远地址时其运动速度大小之比为v1∶v2=________.卫星从近地址运动到远地址所经历的最短时刻为t=________.

  解析:

对于这种一般的天体椭圆运动问题,一般是利用开普勒定律来分析求解的.由开普勒第二和第三定律别离有:

v1a=v2b=k(常量).T2/(

)3=4π2/GM.由此即可别离解得:

卫星在近地址和远地址处运动速度大小之比为v1∶v2=b∶a ①;卫星从近地址抵达远地址所经历的最短时刻为t=

T=

②.

  固然,此例中①式给出的结论亦可由万有引力定律求得.由万有引力定律可得,卫星在近地址和远地址处别离有

  式中的R为椭圆轨道在近地址和远地址这两个对称的特殊位置处的曲率半径.由上式即可求得v1与v2之比如①式所给出.

   四、万有引力定律应历时应分清的几个概念

  1.天体半径和卫星轨道半径

  在中学物理中通常把天体看成一个球体,天体半径就是球的半径,反映了天体的大小.卫星的轨道半径是天体的卫星绕天体做圆周运动的圆的半径.一般情形下,天体卫星的轨道半径总大于该天体的半径.当卫星切近天体表面运行时,可近似以为轨道半径等于天体半径.

  一宇宙飞船到某星球上探测,宇航员想明白该星球的密度,而身旁只有一块腕表,他该怎么办呢?

  解析:

当宇宙飞船绕着星球运行时,可将其视为该星球的一颗卫星,按照关系式GMm/r2=mr4π2/T2(这里r是宇宙飞船的轨道半径),而ρ=

(R为星球半径).因此要想求得星球的密度必需使飞船的轨道半径r=R,才能得出ρ=3π/GT2.所以宇航员只要让飞船切近该天体的表面绕行一周,用腕表测出周期,即可求得星球的密度.

  2.自转周期和公转周期

  自转周期是天体绕自身某轴线转动一周的时刻,公转周期是卫星绕中心天体做圆周运动一周的时刻.一般情形下天体的自转周期和公转周期是不等的,如地球自转周期为24小时,公转周期为365天.在应用中要注意区别.

  已知太阳光射到地球需时t=500s,地球同步卫星的高度h=×104km.试估算太阳和地球的质量.

  解析:

设太阳质量为M1,地球质量为M2,地球同步卫星质量为m.由地球绕太阳做圆周运动知:

GM1M2/r2=M2r4π2/T2,求得M1=

①.①式中r=vt,v为光速.

  再按照地球同步卫星绕地球做圆周运动得:

=m(R地+h)

,得M2=

.②

  ①②代入数据可求得M1、M2=.注意T、T′别离是地球的公转周期和自转周期.

  固然,也有的天体自转周期和公转周期相同,如月球的自转周期等于它绕地球的公转周期,故月球老是以同一面朝向地球.

  3.同步卫星和一般卫星

  地球同步卫星和其他地球卫星虽然都绕地球运行,但它们之间却有着明显的区别.

  地球同步卫星是相对于地球静止,和地球自转具有相同周期的卫星,它的周期T=24h.由于卫星受到的地球引力指向地心,在地球引力的作用下同步卫星不可能停留在与赤道平面平行的其他平面,它必然位于赤道的正上方.如我国发射的电视转播卫星,不是定点在北京上空或其他什么地址的上空,而是停在位于赤道的印度尼西亚上空.按照牛顿第二定律GMm/r2=mω02r,得r=

.可见同步卫星离地心的距离是必然的,代入数据得r=×104km,且线速度v=rω0=×103m/s也是必然的,其绕行方向与地球自转同向.

  而一般卫星的周期、线速度等可比同步卫星大,也可比同步卫星小,但线速度最大值为v=km/s,最小周期大约85min,轨道也能够是任意的,轨道平面必然通过地球球心.

  同步卫星离地距离r,运行速度v1,加速度a1,地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则( )

  A.a1/a2=r/RB.a1/a2=R2/r2

  C.v1/v2=R2/r2D.v1/v2=

  解析:

同步卫星和赤道上的物体的角速度相等,据a=rω2知a1/a2=r/R.第一宇宙速度是卫星切近地面绕行的速度,同步卫星也属于一种卫星,故速度v=

,所以v1/v2=

,本题应选AD.

  4.赤道上的物体和近地卫星

  放在赤道上的物体随地球自转时受两个力的作用,一个是地球对它的万有引力,另一个是地面对物体的支持力.这两个力的合力提供了物体做圆周运动的向心力,即G

-N=mR0ω2,这里N=mg.

  物体的向心加速度a=R0ω

m/s2,远小于地面上物体的重力加速度g=m/s2,故在近似计算中可忽略自转影响,而以为地面上物体的重力和该物体受到的万有引力大小相等.

  绕天体运行的卫星,只受一个力即万有引力,卫星上物体处于完全失重状态,故F=mg′=ma.卫星的向心加速度a等于卫星所在处的重力加速度g′,对近地卫星来讲g′=g=m/s2.

  地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1