浅谈中药丹参及其制剂.docx

上传人:b****6 文档编号:3790582 上传时间:2022-11-25 格式:DOCX 页数:14 大小:32.15KB
下载 相关 举报
浅谈中药丹参及其制剂.docx_第1页
第1页 / 共14页
浅谈中药丹参及其制剂.docx_第2页
第2页 / 共14页
浅谈中药丹参及其制剂.docx_第3页
第3页 / 共14页
浅谈中药丹参及其制剂.docx_第4页
第4页 / 共14页
浅谈中药丹参及其制剂.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

浅谈中药丹参及其制剂.docx

《浅谈中药丹参及其制剂.docx》由会员分享,可在线阅读,更多相关《浅谈中药丹参及其制剂.docx(14页珍藏版)》请在冰豆网上搜索。

浅谈中药丹参及其制剂.docx

浅谈中药丹参及其制剂

成都中医药大学药学院

论文

 

 

题目丹参综述

学号201240301077

学生姓名__杨益____________

年级2012级中药3班

学科专业方向中药学

所属院(所)___药学院_____

 

丹参综述

摘要:

丹参是我国常用的传统中药,从70年代开始,国内外学者对丹参进行了比较系统的研究,如丹参资源调查、化学成分分离、药理作用、制剂及制剂工艺等。

通过查阅相关文献,本文对丹参进行综述。

主要介绍丹参资源情况、丹参主要化学成分及其活性成分的药理作用、有效成分提取分离纯化工艺、丹参制剂类型、丹参药材及制剂的质量控制方法研究。

关键词:

丹参;资源情况;化学成分;药理作用;制剂;提取分离纯化;质量控制

丹参,为唇形科植物丹参SalviamiltiorrhizaBge.的干燥根和根茎。

春、秋二季采挖,除去泥沙,干燥。

具有活血祛瘀,通经止痛,清心除烦,凉血消痈之功效。

用于胸痹心痛,脘腹胁痛,瘕瘕积聚,热痹疼痛,心烦不眠,月经不调,痛经经闭,疮疡肿痛等。

对冠心病、心血管病、慢性肝炎、早期肝硬化等病有良好疗效。

1.丹参正品、习用品、伪品及资源开发现代研究情况

1.1丹参正品资源情况

 上世纪60年代之前,丹参以应用野生品为主,随着市场需求的增加,野生资源锐减,因此,各地开始对丹参进行引种栽培,获得成功后,种植面积迅速扩大[1]。

主产于四川、山东、浙江省等,现在全国大部分地区都有分布。

野生丹参与栽培丹参所处的生长环境迥异,野生者多生于林下,阳光遮蔽,植株生长矮小,地上茎分枝少,根条细长;而栽培丹参则生长在阳光充足,土壤肥沃的丘陵或平原地区,植株高大,地上茎分枝多,根条粗。

临床应用常以人工栽培丹参代替野生丹参,但由于生产中长期的只种不选引起品种退化,导致药材产量和品质均有较大程度下降。

1.2丹参习用品及伪品

1.2.1丹参习用品

(1)南丹参(SalviabawleyanaDun):

根较小,外皮灰红色。

小叶卵状披针形,无毛。

花萼筒状或近筒状;花冠筒短,内藏。

(2)甘西鼠尾(S.przewalskiiMaxim.):

别名甘肃丹参。

多年生草本,高达70厘米,全株密被柔毛。

根粗壮,圆锥形,红褐色。

单叶,有基生叶和茎生叶两种,均具柄,叶片三角状或椭圆戟形。

花序顶生或腋生,总状花序;花萼钟状,2唇形;花冠紫红色;小坚果,灰褐色。

1.2.2丹参伪品

非正品未列入药典,不具备正品丹参的各种功效,故不可代替正品丹参入药。

市场上存在丹参伪品,主要有四种:

(1)甘肃丹参:

主要特征在于叶为单叶,三角状卵形,或卵状披针形,长8-20厘米,基部心形至戟形,边缘有钝锯齿,上面被白色绒毛。

在甘、宁、青、滇地区作丹参入药。

(2)褐毛丹参:

主要区别点,叶为基部耳状,叶下面密生褐色柔毛,根特别粗大,长15-30厘米,根头单条或岔分为数枝,每枝由数股合成,主根有多数不规则的纵沟,表面紫褐色。

(3)云南丹参:

根肉质,数个簇呈小萝葡状或条状。

云南地区以根作紫丹参入药。

(4)土丹参:

全株被长柔毛,单叶具长柄,叶片狭长三角形至卵状三角形,连续有粗齿牙。

根粗壮,大者似萝卜状。

暗褐色,表面有纵沟纹,习称毛丹参。

1.3丹参资源开发现代研究情况

由于直接从丹参中提取有效成分纯度低、效率低、提取纯化困难、加之野生丹参资源有限,栽培品质量差异大,影响了临床用药质量和天然药物的开发与持续利用。

为解决此问题,化学及分子生物学等多种现代技术手段应用到丹参资源质量及产量的提高中,并已取得不同程度的进展。

如丹参活性成分的人工合成,如丹酚酸A,B,C,D,E,F及丹参酮ⅡA等有效成分已被成功合成;生物技术手段的应用,如多倍体诱导、悬浮细胞培养、毛状根培养技术、离体组织培养[2]的使用是高效获取丹参药用成分的重要手段;次生代谢调控及次生代谢工程使丹参中丹参酮及丹酚酸含量增加,近年来已取得了较多研究成果。

为了解决丹参资源缺乏的问题,开始利用组织培养技术改良丹参品质、提高丹参产量[3]。

2.丹参主要化学成分及活性成分

2.1丹参主要化学成分

从二十世纪三十年代开始,就有许多国内外的学者研究它的化学成分。

丹参的化学成分[4]复杂,其中包括①脂溶性的二萜类成分,二萜醌类,如丹参酮I,丹参酮ⅡA,丹参酮ⅡB、异丹参酮I,异丹参酮Ⅱ、隐丹参酮、异隐丹参酮、二氢丹参酮I、二氢异丹参酮I等;②水溶性的酚酸类,如丹酚酸A—K、原儿茶醛、丹参素、熊果酸、异阿魏酸等;③其它成分,黄酮类,三萜类,甾醇等成分。

如黄芩苷、β-谷甾醇、胡萝卜苷、氨基酸、无机元素等。

2.2丹参活性成分

丹参的活性成分为脂溶性的二萜醌类化合物和水溶性的酚酸类化合物[5]。

2.2.1脂溶性的二萜醌类化合物

二萜醌类化合物是丹参脂溶性的主要成分,它们在骨架上大多具有三元或四元碳环的邻醌或对醌结构.因此统称为丹参酮类化合物(tanshinones)。

如丹参酮I为菲醌并呋喃环的结构,丹参酮IIA为萘醌并呋喃环的结构,隐丹参酮为萘醌并二氢呋喃环的结构,丹参酮在结构上的特点是他们具有抗肿瘤、抗氧化等活性的结构基础,是解释他们具有许多共同活性和活性差异的根本依据。

目前,丹参脂溶性成分以丹参酮为有效成分参考指标。

2.2.2水溶性的酚酸类化合物

丹参的水溶性活性成分主要为酚酸类物质,包括原儿茶醛,3,4一二羟基苯甲酸以及其缩合而成的多酚性酸等。

目前,水溶性成分以丹酚酸B、原儿茶醛、丹参素为有效成分参考指标。

3.丹参活性成分的药理作用

20世纪30年代以来,国内外学者对丹参及其活性成分等的药理进行了大量的研究,发现其具有广泛的药理活性,对多种疾病有确切的疗效。

3.1抗感染作用

3.1.1抗菌消炎作用

刘岩,等[6],做实验证明丹参具有拮抗AngⅡ的作用,可在多层次、多靶点对抗RASS,迅速降低炎症反应因子AngⅡ,且有使肝、肺、肠组织病理损害减轻的作用。

3.1.2抗氧化作用

Zhao,GR[7],等做实验证实,丹参素是一种强抗氧化剂。

丹参素具有清除自由基,抗氧化损伤的活性,且其清除能力大于维生素C,对过氧化氢导致的人静脉血管内皮细胞损伤的保护作州也与抗氧化活性有关。

3.1.3抗内毒素作用

张萃,等[8],采用ELISA法检测细胞培养上清中TNF-a和IL-13产生的影响显示丹参酮ⅡA、丹参酮I和丹参总酮抑制细胞增殖效果较好。

隐丹参酮、丹参酮ⅡA和丹参总酮对模型细胞产生TNF-a有明显抑制作用,丹参酮ⅡA、隐丹参酮对模型细胞产生IL-10有明显抑制作用,丹参酮ⅡA、丹参酮I和隐丹参酮可不同程度抑制内毒素炎症过程中的炎症因子变化以及巨噬细胞的过度活化增殖。

3.2对心血管系统的作用

3.2.1对心肌的保护作用

徐通达[9]丹酚酸A通过DUSP介导ERK/JNK通路对大鼠心肌缺血再灌注损伤抗凋亡作用从而保护心肌。

丹参酸B可以通过JNK3通路抑制IRI的心肌细胞的调亡[10],从而减少心肌损伤。

3.2.2扩张血管

丹参可以使实验性高脂血症及动脉粥样硬化家兔的离体心脏的冠状动脉扩张,冠状动脉流量增加[11],并能对抗吗啡、心得安的收缩冠状动脉作用,因此丹参素被认为是扩张冠状动脉血管的有效成分之一。

3.2.3抗动脉粥样硬化(As)

有研究认为,丹参中的脂溶性成分和水溶性成分均表现出了一定的抗As活性,参与了As发生的各个病理阶段。

丹参治疗动脉粥样硬化的机制有:

(1)丹参素可抑制内源性胆固醇的合成,减少低密度脂蛋白(LDL),可用于动脉粥样硬化的防治[12];

(2)DS-201可能通过阻止血管平滑肌细胞增殖而起到抗动脉粥样硬化作用[13];(3)丹参能降低MCP-1的表达水平,这可能是抑制动脉粥样硬化形成的分子学机制之一[14];(4)抗血栓的作用[15];(5)血管舒张作用。

3.4改善微循环

丹参对外周和内脏微循环的改善是其活血化瘀的最主要作用。

王世军,等[16]发现丹参注射液能使在生理状态及高分子右旋糖苷所致微循环障碍时小鼠脑微区血流量明显升高。

发现丹参注射液可使大鼠暴发性肝衰竭模型的肠系膜微循环灌注得到显著改善。

丹参改善微循环障碍与其能提高红细胞的变形能力、改善血液的粘弹性有关。

3.5保肝作用

丹参酮类是丹参的主要脂溶性成分,主要包括TanⅡA,隐丹参酮,丹参酮Ⅰ,二氢丹参酮等。

TanⅡA可以通过激活转录因子NF-E相关因子对抗氧化反应元件通路防止雷公藤甲素诱导的小鼠急性肝损伤[17]。

丹参素通过抗氧化机制对CCl4引起的大鼠急性肝损伤产生保护作用[18]丹参素可以促进大鼠减体积肝移植后肝脏再生,从而促进肝功能的早期恢复。

丹酚酸类化合物包括丹酚酸A,B,C等多种结构类似的化合物。

其中目前对SalA和SalB研究较多。

SalA和SalB通过不同的机制发挥抗肝纤维化作用[19]。

3.6抗肿瘤作用

3.6.1对肿瘤细胞的杀伤作用

丹参酮类化合物的菲环结构与DNA分子相结合、呋喃环、醌类结构产生自由基,引起DNA损伤;同时抑制PCNA等基因表达,影响DNA多聚酶δ活性,抑制肿瘤细胞DNA合成,抑制肿瘤细胞增殖[20]。

3.6.2对肿瘤细胞的诱导分化作用

近年来多位学者研究表明[21]丹参酮类对高转移性肺癌PGCL3细胞和低转移人肺腺癌PAa细胞、白血病HL-60和K562细胞、人肝癌细胞株HepG2均有诱导其分化、凋亡的作用,其机制可能是通过抑制细胞原癌基因、诱导抑癌基因的表达,阻止细胞进入S期及DNA合成,从而诱导肿瘤细胞分化。

3.6.3诱导肿瘤细胞凋亡

丹参酮类诱导肿瘤细胞凋亡,主要通过以下途径:

①阻滞细胞周期。

二氢丹参酮Ⅰ[22]可以诱导K562/ADR细胞生长停滞在S相引起细胞凋亡,丹参酮ⅡA使MKN-45细胞饱和、不饱和结构周期阻滞于G2/M期。

②影响凋亡蛋白表达。

丹参酮Ⅰ可使HepG2细胞[23]。

3.6.4抑制血管生成

研究表明,二氢丹参酮I可以通过抑制内皮细胞的增殖、迁移、侵袭和小管形成来抑制血管生成。

此外,二氢丹参酮Ⅰ,隐丹参酮对AGS细胞和Hep3B细胞HIP-1α的表达有抑制作用,而HIF-1α一定程度来说可以促进肿瘤血生成[24]。

3.7对神经系统的作用

丹参对中枢神经系统有抑制作用。

丹参水提液能明显抑制小鼠自主活动,其作用随剂量的增大而增强,与氯丙嗪和眠尔通合用时镇静催眼作用明显增强。

丹参具有明显的镇静,催眠,抗惊厥作用,可明显增强镇静药的作用,能使大脑皮层自发活动振幅减小,抑制丘脑后核内痛放电,产生中枢性的镇痛作用,这与中医所述的丹参能够清心除烦相符[25]。

4.丹参有效成分的提取分离与纯化

近年来,国内外对于丹参有效成分提取分离的研究较多,主要涉及丹参脂溶性成分二萜醌类和水溶性成分酚酸类物质的提取分离纯化。

目前,丹参脂溶性成分以丹参酮为有效成分参考指标。

目前,水溶性成分以丹酚酸B、原儿茶醛、丹参素为有效成分参考指标[26]。

4.1脂溶性有效成分提取分离与纯化

4.1.1脂溶性有效成分提取分离

脂溶性二萜醌类有效成分的提取,主要包括丹参酮、隐丹参酮、异丹参酮、二氢丹参酮。

二萜醌类化合物,即丹参酮在临床应用中较早、其提取和分离工艺技术的研究也相对深人。

主要提取方法有乙醇回流法、超声提取法、微波辅助萃取法、湿式超微粉碎提取法、亚临界水提取法等。

乙醇回流法:

于纯森等[27]通过单因素试验和正交试验,确定乙醇加热回流法提取丹参酮的最佳提取条件为:

丹参粉碎后过4号筛,乙醇浓度为75%,提取温度为65℃,提取时间为2.5h,料液比为1∶24,丹参酮的提取率:

0.346%。

SFE-CO2萃取法:

韩晓珂等[28]采用正交设计优化超临界二氧化碳萃取丹参酮ⅡA工艺,最佳工艺为萃取压力为35MPa、萃取温度为40℃、夹带剂用量为100%、萃取时间为2h。

丹参酮ⅡA含量(mg·g-1):

3.87。

用超临界技术提取丹参酮Ⅱ优于醇提法。

因其生产周期短,又无需加热,因此避免了丹参酮Ⅱ的降解反应,故其能保留较多的丹参酮Ⅱ[29]。

微波辅助萃取法:

主要是利用微波能产生的破壁效应,使植物细胞内活性成分完全释放,并利用固相萃取法,将保留在吸附剂上的样品根据选择性洗脱和选择性吸附之间的过程差异,达到有效成分分离净化和富集的目的[30]。

陈殿伟等[31]对提取溶剂浓度、微波辐照时间、微波输出功率、提取温度和液固比等影响提取的因素进行考察。

实验确定了微波辅助法提取丹参酮ⅡA的最佳工艺条件:

将丹参细粉预浸泡30min、20倍量乙醇(70%)提取6min、加热至75℃、在微波输出功率为450W时提取2次,其提取率可达到97.55%。

湿式超微粉碎提取:

贺建东等[32]采用3因素3水平正交实验对乙醇浓度(60%、70%、80%)、乙醇量(6倍、8倍、10倍)和提取时间(5min、10min、30min)进行实验研究。

得到最佳提取条件内为80%乙醇8倍量提取10min。

其中提取时间对提取效果的影响最为显著(P<0.05),乙醇浓度对提取效果影响也较大,但没有显著影响(P>0.05),生产中考虑到成本,可选用70%的醇提取。

丹参酮ⅡA含量(mg·g-1):

大约1.382。

在丹参的多种脂溶性有效成分中,丹参酮ⅡA的临床应用较多,其分离和提纯工艺技术的研究颇多,如亚临界水提取法常被用来提取丹参酮ⅡA。

亚临界水提取法通过升高温度和增加压力,使水的极性降低,增强了水对脂溶性组分溶解能力特性,大大减少了提取时间和提取溶剂的消耗,避免使用有机溶剂造成的污染。

4.1.2脂溶性有效成分的纯化

水沉法:

采用正交试验法考察浓缩液的相对密度A(0.85、0.90、1.00)、加水倍量B(2倍、3倍、4倍)和静置时间C(6h、12h、24h)的影响。

确定最佳工艺为A1B2C2,结果总丹参酮的质量分数在55%左右,确证该工艺可以提取纯化得到符合标准的有效部位。

大孔树脂法:

选用X-5型树脂作为纯化用树脂。

采用拌样法上样,A生药材∶干树酯(3∶1、2∶1、1∶1),B干膏∶湿树酯(1∶3、1∶5、1∶7),C径高比(1∶3、1∶5、1∶7)进行正交试验考察。

确定最佳工艺为A1B1C2或C3,总丹参酮的质量分数控制在50%左右,确证该工艺也可以提取纯化到合格的有效部位。

吴婉莹等[33]对水沉-大孔树脂工艺联用进行了研究:

将水沉工艺考察中最优工艺筛选后的浸膏干燥后,取两份平行样按大孔树脂工艺考察项下最佳工艺进行纯化测定,水沉后的样品再用大孔树脂纯化,总丹参酮和丹参酮ⅡA的质量分数没有明显提升。

4.2水溶性有效成分的提取分离与纯化

4.2.1水溶性有效成分的提取分离

丹参中的水溶性成分在水中溶解度较大,提取方法有:

渗漉法、乙醇回流法、高速逆流色谱法、SFE-CO2萃取法等。

渗漉法:

刘杨等[34]将95%乙醇渗漉后的药渣继续用50%乙醇进行渗漉,用12倍量50%乙醇,4mL·min-1的速度进行继续渗漉能将丹酚酸B类成分较好的提取出来。

丹酚酸B的含量(mg·g-1):

59.02。

乙醇回流法:

谢静[35]等以加乙醇量(因素A)(4倍、6倍、8倍)、回流时间(因素B)(0.5h、1.0h、1.5h)、乙醇浓度(因素C)(20%、40%、60%)、提取次数(因素D)(1次、2次、3次)为考察因素,正交设计,最佳工艺条件为提取时间为1.0h。

最后确定的提取工艺为加6倍量40%的乙醇加热回流3次,每次1.0h。

丹酚酸B的含量(mg·g-1生药):

32.07。

高速逆流色谱法(HSCCC法)[36]:

具有快速、简便的优点,能够从粗提取液中分离出高达98%的丹酚酸B,纯度大大高于高速逆流色谱分离纯化法和pH区带逆流色谱法。

SFE-CO2萃取法:

金承怀等[37]优选出超临界二氯化碳萃取最佳工艺:

夹带剂选择10%的乙醇+5%的吐温-80,用量与药材相等,萃取温度为55℃,压力30MPa,萃取时间1.5h。

结论:

加入非离子表面活性剂的多元醇混合体系比只用乙醇作夹带剂进行超临界CO2提取丹酚酸B效率高约6倍。

微波萃取与超声波萃取法:

王桂花等[38]对微波萃取和超声萃取进行了研究和比较;萃取溶剂为30%乙醇,液固比为80∶1(mL·g-1),萃取时间为6min,微波功率为60%(510W)的条件下,微波萃取效果最好。

时间为30min,乙醇浓度为30%,超声效果最好。

两者相比:

微波萃取6min和超声提取30min相当,结果表明微波萃取法快速、高效。

5.丹参制剂品种

目前出现了很多含有丹参的制剂[39],脂溶性成分入药的丹参制剂,水溶性成分入药的丹参制剂,兼用脂溶性成分和水溶性成分的丹参制剂。

脂溶性成分入药的丹参制剂主要有:

丹参酮片,丹参酮胶囊,丹参酮油膏,丹参舒心胶囊,复方丹参滴丸,丹参舒心片,丹参酮II磺酸钠注射液,精制冠心片等;水溶性成分入药的丹参制剂主要有:

丹参注射液,丹参素注射液,复方丹参注射液,丹参黄芪注射液,丹芪益心贴,复方丹参膏,复方丹参糖浆等;兼用脂溶性成分和水溶性成分的丹参制剂有:

复方丹参片,冠心丹参片,丹七片,丹田降脂丸,冠心宁片,复方丹参黄芪胶囊等。

此外还出现了一些新剂型如贴剂,分散片,微胶囊,脂质体。

这些新剂型有助于改善丹参类药物的稳定性,提高其储藏期和有效期,提高了产品质量,增强了疗效,为丹参临床应用开辟了更为广阔的前景。

6.丹参及其复方制剂的质量控制方法研究

6.1丹参药材质量控制研究

中国药典(2010版)采用高效液相色谱法分别对丹参中的丹参酮ⅡA和丹酚酸B进行质量控制。

近年来,随着定量方法的发展以及对丹参药材研究的深入,对同时测定多种指标成分研究广泛。

总结如下:

6.1.1以9种成分作为质控指标的分析方法

汪红等[40]采用高效液相色谱法,一次性检测丹参及其亲缘植物中脂溶性、水溶性9种成分丹参素、原儿茶酸、原儿茶醛、丹酚酸B、丹参酸甲酯、二氢丹参酮、隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA的含量。

使用日本岛津ShinrpackCLC-ODS柱(150mm×4.6mm,5μm);梯度洗脱流动相:

0.5%甲酸水溶液(A)-乙腈(B),洗脱程序:

0~15min,0%~40%B,15~40min,40%~65%B,40~55min,65%B。

检测波长,0~25min为281nm,25~55min为254nm。

柱温为25℃,流速0.8mL/min,进样量20μL。

结果,丹参素、原儿茶酸、原儿茶醛、丹酚酸B、丹参酸甲酯、二氢丹参酮、隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA的线性范围分别为1.3~132.5ug/mL(r=0.9991),0.6~57.5ug/mL(r=0.9994),0.6~55.5ug/mL(r=0.9994),2.8~282.0ug/mL(r=0.9994),0.6~55.5ug/mL(r=0.9991),1.4~135.0ug/mL(r=0.9998),0.9~90.8ug/mL(r=0.9995),1.1~113.8ug/mL(r=0.9999),1.9~186.0ug/mL(r=0.9995)。

回收率为95.62%~104.22%,RSD为1.42%~3.52%。

该实验采用梯度洗脱,切换检测波长等方法,同时测定丹参及其亲缘植物中水溶性和脂溶性9种成分,可作为丹参药材及其复方制剂的质控标准,亦为制定此类制剂的指纹图谱研究提供参考。

此外,该研究证明,丹参丹酚酸类含量有显著差异,不同产地的同种样品之间也存在明显差异,因而丹参质量控制极为重要,此文为丹参的质量控制及临床替代用药提供了依据。

6.1.2以4种成分作为质控指标的分析方法

安睿等[41]采用高效液相色谱法测定丹参中脂溶性成分。

建立不同产地丹参中二氢丹参酮Ⅰ、隐丹参酮、丹参酮Ⅰ、丹参酮ⅡA的含量测定方法。

使用AgilentZORBAXEclipse×DB-C18(4.6×250mm,5um)色谱柱,流动相为1%醋酸甲醇溶液(A)-1%醋酸水溶液(B)作梯度洗脱。

A:

0~15min,10%~85%;15~40min,85%~100%;(A+B=100%)。

流速1mL/min,检测波长为280nm,柱温25℃。

结果,二氢丹参酮Ⅰ、隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA的线性范围分别为0.25~2.0ug(r=0.9998),0.3125~2.5ug(r=0.9995),1.25~10ug(r=0.9999),0.3125~2.5ug(r=0.9996)。

所测的4种成分的平均回收率均大于97%,RSD小于1.2%。

精密度良好,4组分峰面积的RSD均小于1.5%。

杨伟等[42]采用反相高效液相色谱法梯度洗脱同时测定丹参中4种水溶性成分丹参素、原儿茶醛、迷迭香酸、丹酚酸B的含量。

色谱条件为KromasilC18(4.6×200mm,5μm)色谱柱,流动相甲醇-0.5%磷酸水溶液梯度洗脱(50min内甲醇从40%升到100%)流速1.0mL/min,检测波长280nm,柱温30℃。

结果,丹参素、原儿茶醛、迷迭香酸、丹酚酸B的线性范围分别为0.082~0.82ug(r=0.9997),1.55~7.76ug(r=0.9998),1.96~9.8ug(r=0.9994),3.0~30.0(r=0.9996)。

4组分10h稳定性试验RSD为1.0%~1.7%,精密度试验RSD为0.87%~1.5%,4个成分的平均回收率分别为99.0%,99.1%,99.8%,106.1%,RSD分别为1.4%,2.1%,2.9%,2.7%。

该法简便准确,为丹参及其制剂的质量控制提供了依据。

6.1.3以3种成分作为质控指标的分析方法

曹冬等[43]用超声法提取丹参饮片中的脂溶性有效成分,然后用反相高效液相色谱法同时测定丹参饮片中隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA的含量。

使用DiamonsilTMC18色谱柱(250mm×4.6mm,5um),以甲醇:

水=75:

25为流动相,流速为0.8mL/min,检测波长270nm。

3个活性成分隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA分别在1.456~10.19,2.160~15.12和3.152~22.06ug/mL含量范围内与峰面积呈良好线性关系,相关系数r分别为0.9991,0.9992和0.9996。

3组分平均回收率分别为为98.04%,99.65%,99.31%,RSD分别为1.3%,1.2%,1.2%。

根据试验结果分析,不同产地的丹参中有效成分的含量差异较大,可通过增加丹参的测定指标以便更加全面的考察丹参质量。

该法快速简便,可用于丹参饮片的质量控制。

6.2丹参复方制剂

据统计,丹参制剂已达到百种以上,定量测定多种有效成分的含量,已成为评价丹参制剂质量的重要方法。

尤其是同时测定丹参复方制剂中其它味药有效成分的含量,已成为研究热点。

现归纳如下:

6.2.1以7种成分作为质控指标的分析方法

韦英杰等[44]采用高效液相二极管阵列检测法同时测定3种复方丹参制剂中7个成分原儿茶醛、丹酚酸B、丹参酮ⅡA、隐丹参酮、三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1的含量。

色谱柱为AgilentZorbaxC18柱(5um,250mm×4.6mm),流动相A为0.1%的磷酸水溶液,B为乙腈,梯度洗脱:

0~10min,7%~17%B;10~12min,17%~20%B;12~16min,20%~21%B;16~32min,21%B;32~40min,21%~29%B;40~55min,29%~35%B;55~65min,35%~65%B;65~80min,65%~80%B。

柱温30℃,流速1mL/min(22~28min,0.8mL/min),检测波长为203、2

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1