沥青混合料配合比设计与拌和质量控制.docx

上传人:b****3 文档编号:3764479 上传时间:2022-11-25 格式:DOCX 页数:23 大小:143.99KB
下载 相关 举报
沥青混合料配合比设计与拌和质量控制.docx_第1页
第1页 / 共23页
沥青混合料配合比设计与拌和质量控制.docx_第2页
第2页 / 共23页
沥青混合料配合比设计与拌和质量控制.docx_第3页
第3页 / 共23页
沥青混合料配合比设计与拌和质量控制.docx_第4页
第4页 / 共23页
沥青混合料配合比设计与拌和质量控制.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

沥青混合料配合比设计与拌和质量控制.docx

《沥青混合料配合比设计与拌和质量控制.docx》由会员分享,可在线阅读,更多相关《沥青混合料配合比设计与拌和质量控制.docx(23页珍藏版)》请在冰豆网上搜索。

沥青混合料配合比设计与拌和质量控制.docx

沥青混合料配合比设计与拌和质量控制

沥青混合料配合比设计与施工质量控制

一.引言

随着经济实力的逐渐增强,公路建设事业迅猛发展,我国高等级公路里程已跃居世界第二,与此同时,汽车运输也进入快速发展期,交通量逐年增大,重型运输车辆日益增加,对沥青路面带来严峻考验。

目前,我国高等级道路主要是沥青混凝土路面,高等级道路能否发挥其应有的作用,很大程度取决路面面层质量。

优质路面不但要求有足够的强度、平整度,又要兼顾高温稳定性、低温抗裂性、水稳定性、抗滑性和耐久性等相互制约或矛盾的要求。

沥青混合料配合比设计是施工过程中一项十分重要的工作,是建设优质沥青路面的关键一步。

沥青混合料配合比设计应通过目标配合比设计、生产配合比设计及生产配合比验证三个阶段,确定沥青混合料的材料品种及配合比、矿料级配、最佳沥青用量。

使其既能满足沥青混合料的技术要求,又符合经济原则。

二.目标配合比设计阶段

(一)原材料要求

1.沥青

依据设计文件的要求,选择相应标号的沥青,各个沥青等级的适用范围应符合下表要求。

按试验规程的要求取样,经检验符合设计文件道路石油沥青技术要求,才能用于配合比设计试验。

表1道路石油沥青的适用范围

沥青等级

适用范围

A级沥青

各个等级的公路,适用于任何场合和层次

B级沥青

1.高速公路.一级公路沥青下面层及以下层次,二级及以下公路的各个层次;

2.用做改性沥青.乳化沥青.改性乳化沥青.稀释沥青的基质沥青

C级沥青

三级及以下公路的各个层次

2.粗集料

粗集料应该洁净、干燥、表面粗糙。

质量符合设计文件要求。

集料的形状应该是越接近立方体的越好,细长扁的针片状颗粒对沥青混合料的性能有重大影响。

由于针片状颗粒很容易在施工过程中被刚性轮碾压和振动破碎,施工性能极差,而且在混合料内部遗留下相当数量没有被沥青裹覆的断面,成为混合料内部的微裂缝。

这些微裂缝将使沥青路面在受力作用时产生应力集中而导致裂缝扩展开裂。

集料的粘附性是由岩性决定的,玄武岩、闪长岩、辉绿岩、石灰岩属中基性岩,与沥青粘附性较好,应优先使用;花岗岩、砂岩等酸性石料与沥青粘附性较差,但采取掺加消石灰、水泥或抗剥落剂等技术措施仍能加以利用;应综合各项指标和经济性进行选择。

表2:

沥青混合料用粗集料质量技术要求

指标

单位

高速公路及一级公路

其他等级公路

试验方法

表面层

其他层次

石料压碎值,不大于

%

26

28

30

T0316

洛彬矶磨耗损失,不大于

%

28

30

35

T0317

表观相对密度,不小于

-

2.60

2.50

2.45

T0304

吸水率,不大于

%

2.0

3.0

3.0

T0304

坚固性,不大于

%

12

12

-

T0314

针片状颗粒含量(混合料),不大于

其中粒径大于9.5mm,不大于

其中粒径小于9.5mm,不大于

%

%

%

15

12

18

18

15

20

20

-

-

T0312

水洗法<0.075颗粒含量,不大于

%

1

1

1

T0310

软石含量,不大于

%

3

5

5

T0320

3.细集料

细集料包括机制砂、天然砂和石屑。

沥青混合料宜采用人工砂作为细集料。

细集料应该洁净、干燥、无风化、无有害杂质、有适当的颗粒组成,并与沥青有良好的粘附性。

天然砂由于形态圆滑、与沥青粘附性差,使用太多对高温稳定性不利。

虽然天然砂具有施工时易压实、路面好成型的优点,但在沥青混合料中,天然砂的含量不应超过矿料总含量的20%,重交通道路不应超过矿料总含量的10%。

表3:

沥青混合料用细集料质量要求

项目

单位

高速公路、一级公路

其他等级公路

试验方法

表观相对密度,不小于

-

2.50

2.45

T0328

坚固性(>0.3mm部分),不小于

%

12

-

T0340

项目

单位

高速公路、一级公路

其他等级公路

试验方法

含泥量(小于0.075mm的含量),不大于

%

3

5

T0333

砂当量,不小于

%

60

50

T0334

亚甲蓝值,不大于

g/kg

25

-

T0346

棱角性(流动时间),不小于

s

30

-

T0345

(二)矿料级配计算

1.筛分

粗集料、细集料和填料都采用水洗法筛分,以准确确定0.075mm通过率。

根据筛分结果可进一步判断细集料,特别是石屑的使用性能,若0.075mm通过率在10%以上,则表明土的含量可能超标,应按规范要求测定石屑的砂当量,如果砂当量小于60%,说明石屑中含有较多的泥土成分,不能使用。

2.合成级配

(1)计算合成级配时,应尽量将0.075mm、2.36mm、4.75mm筛孔的通过率接近中值。

最大公称粒径附近的筛孔通过率处于中值和上限之间;

(2)按关键筛孔通过百分率在工程设计级配范围内所处位置(中值偏上、中值、中值偏下),设计成偏细、正常和偏粗三种组合类型。

(3)合成级配曲线应成S型,不得有太多的锯齿型交错,且在0.3~0.6mm范围内不出现“驼峰”。

目标配合比设计流程图(图1)

 

(三)马歇尔试件的制备

马歇尔试件的制备直接影响试件各个指标的测定结果,对配合比设计和油石比的确定有举足轻重的作用。

首先选择击实温度,按规范要求并结合施工初压的温度确定。

预估试件重量,在标准温度下击实,测量试件厚度,计算实际试件击实重量。

应保证该组每个试件取样均匀,重量一致,温度相同。

如果选择的油石比范围合理,五组不同油石比的试件中间,可能会出现重量的峰值。

表4:

热拌普通沥青混合料试件的制作温度(单位:

℃)

施工工序

石油沥青的标号

50号

70号

90号

110号

130号

沥青加热温度

160~170

155~165

150~160

145~155

140~150

矿料加热温度

集料加热温度比沥青温度高10~30(填料不加热)

沥青混合料拌和温度

150~170

145~165

140~160

135~155

130~150

试件击实成型温度

140~160

135~155

130~150

125~145

120~140

(四)最佳油石比的确定

1.体积指标的计算

表5:

指标

方法

试件毛体积相对密度rf

表干法或蜡封法rf

混合料最大相对密度rt

普通沥青:

真空法改性沥青:

计算法

集料的有效相对密度

rsb=100/(P1/r1+P2/r2+…+Pn/rn)

空隙率

VV=(1-rf/rt)*100

VMA

VMA=(1-rf/rsb*Ps)*100

VFA

VFA=(VMA-VV)/VMA*100

有效沥青用量

Pbe=Pb-Pba/100*Ps

2.分析各项指标,确定最佳油石比

以油石比或沥青用量为横坐标,以马歇尔试验的各项指标为纵坐标;将试验结果点入图中,连成圆滑曲线。

确定均符合规范规定的沥青混合料技术标准的沥青用量范围OACmin~OACmax.选择的沥青用量范围必须涵盖设计空隙率的全部范围,并尽可能涵盖沥青饱和度的要求范围,并使密度及稳定度曲线出现峰值。

如果没有涵盖设计空隙率的全部范围,试验必须扩大沥青用量范围重新进行。

利用图中各项指标,依据规范要求,求取相应于密度最大值、稳定度最大值、目标空隙率中值(或中值)、沥青饱和度范围的中值的沥青用量a1、a2、a3、a4。

按公式①取平均值作为OAC1。

      OAC1=(a1+a2+a3+a4)/4     ①

如果在所选择的沥青用量范围未能涵盖沥青饱和度的要求涵盖范围,按公式②,求取三者的平均值为OAC1。

OAC1=(a1+a2+a3)/3②

对所选择试验的沥青用量范围,密度或稳定度没有出现峰值(最大值经常在曲线的两端)时,可直接以目标空隙率所对应的沥青用量a3作为OAC1,但OAC1必须介于OACmin~OACmax的范围内,否则应重新进行配合比设计。

以各项指标均符合技术标准(不含VMA)的沥青用量范围OACmin~OACmax的中值作为OAC2。

OAC2=(OACmin+OACmax)/2③

通常取OAC1和OAC2的中值作为计算的最佳沥青用量OAC。

OAC=(OAC1+OAC2)/2④

根据实践经验和公路等级、气候条件、交通情况调整确定最佳沥青用量OAC。

图2:

马歇尔试验结果示例

从图2可知:

a1=4.5 a2=4.5a3=4.0a4=4.1根据公式①:

OAC1=(a1+a2+a3+a4)/4=4.3

在公共范围图表中可查出OACmin=3.8OACmax=4.8那么,根据公式②:

OAC1=(a1+a2+a3)/4.5=4.3

最佳沥青用量OAC=4.3%,对炎热地区公路以及高速公路、一级公路的重载交通路段,山区公路的长大坡度路段,可将油石比下调到4.1%,但孔隙率必须符合要求。

3.矿料间隙率(VMA)和粉胶比(FB)

根据最终确定的最佳沥青用量,查出对应的空隙率和矿料间隙率,检验是否满足规范关于最小VMA值的要求。

按公式⑤计算沥青混合料的粉胶比,宜符合0.6~1.6的要求。

对常用的公称最大粒径为13.2~19mm的密级配沥青混合料,粉胶比宜控制在0.8~1.2范围内。

FB=P0.075/Pbe⑤

式中:

FB—粉胶比,沥青混合料的矿料中0.075mm通过率与有效沥青含量的比值,无量纲。

P0.075—矿料级配中0.075mm通过率(水洗法),%。

Pbe—有效沥青含量,%。

以上两个指标若满足要求,配合比设计即通过,否则需要调整级配,重新进行矿料级配设计。

(五)配合比设计检验

对于高速公路和一级公路的密级配沥青混合料,需在配合比设计的基础上按规范要求进行各种使用性能的检验,不符合要求的沥青混合料,必须更换材料或重新进行配合比设计。

我们通常都是用调整后的最佳沥青用量制作试件,验证试验的项目包括:

高温稳定性检验、水稳定性检验、低温抗裂性能检验和渗水系数检验。

三.生产配合比设计阶段

(一)热料仓取料

为了保证所取热料仓的样品具有正常生产时同样的性质,就要求取料时拌和楼各个机构保持与生产时一样的状态。

特别是矿料的烘干温度和除尘强度直接影响1#热料仓(细集料)的筛分结果。

开机后连续上料十五分钟左右,将一开始按以前生产配合比投料拌和的几锅料(至少5锅以上)废弃,然后分别将每个热料仓放出至装载机上,倒在水泥地,待热料温度下降到常温时,适当拌和,从三处以上的位置取样,拌和均匀,取要求数量的试样。

(二)冷料仓流速的调整

冷料仓的出料控制型式分两种:

振动式和输送式。

振动式的振动源来自安装在冷料仓下部出料口附近的马达或电磁包。

通过改变振动马达的转速或电磁包的振动频率就能改变冷料仓的出料量。

输送式是紧贴在出料口下部专门安装了一个小型皮带运输机。

当小皮带往复运动时,就可将集料由出料口的侧门卸到大型水平皮带运输机上,然后进入烘干筒加热。

因此,只需改变小皮带的转速,就能改变冷料仓的流量。

以小皮带出料口为例,冷料的流量大小与电机转速、出料口开启大小、集料规格和集料含水量有关。

为了使冷料的输送比例和目标配合比吻合,冷料控制系统参数的确定非常重要。

冷料仓的参数确定主要是做好各个冷料仓的集料流量测定工作,其步骤如下:

1.先测定各冷料仓小皮带的转速,用秒表实测各个冷料仓在相同分速度(集料电机转速)Vi(最大分速度的100%、90%、80%、70%和60%)下转一周长度W所耗用的时间T,则单位时间各小皮带的运转长度Wi:

Wi=W/T⑥

2.开启仓门并固定,测量冷料仓集料料流断面面积Ai,在实测中发现,集料料流断面面积Ai的大小,除与冷料仓门开启程度有关外,还与集料的粒径及含水量有关,应分别测定不同集料的料流断面面积Ai。

当含水量增大,Ai相应减小。

这种关系在细集料中更明显。

3.测量各种集料的松方密度Ri,则单位时间各种集料的流量Qi:

Qi=Wi*Ai*Ri⑦

根据冷料仓在不同集料分速度下得到的不同的集料流量值,绘制集料

分速度-集料流量曲线图

4.综合分析目标配合比和集料分速度-集料流量曲线,可计算得到各冷料仓的集料分速度(0%~100%)。

采用此种方式上料,可最大限度地减少热料仓溢料和亏料的现象,降低成本,提高生产效率。

如果石屑的0.075mm粒径通过率在10%以下,采取以上方式效果明显,若0.075mm的通过率越大,则热料仓中细集料愈亏,因为0.075mm以下粉料越多,除尘设备

料100

%

集料流量(t/h)(图3)

的强度设定就越高,甚至一部分0.15mm和0.3mm的细料都被抽走。

就会导致1#热料仓(细集料)亏料,既使加大1#冷料仓上料比例,取料筛分组合结果与目标级配相去甚远。

所以,应尽量控制石屑中0.075mm以下的含量。

(三)热料仓的矿料筛分与级配组合

将取得的几种热料仓的矿料分别采用水洗法筛分,用电算法进行组合计算,曲线分布的要求类似于目标配合比。

(四)马歇尔试验

按组合计算的结果配料进行马歇尔试验,规范规定可取目标配合比得出的最佳油石比±0.3%三档进行试验。

如果石屑粉料偏多,除尘后变化较大,最好仍采用五档油石比,用目标配合比完全相同的方式,重新确定最佳油石比。

四.生产配合比验证

生产配合比的验证是通过实际施工对预期结果的验证,也是从感性的角度对沥青混合料配合比设计的评估,同时也是对施工单位制定的施工方案的检验,检验拌合、运输、摊铺、碾压工艺等的可行性和设备的匹配情况。

施工单位进行试拌试铺时,应报告监理部门和业主。

工程指挥部门会同设计、监理、施工人员一起进行鉴别。

拌和楼按照生产配合比的结果进行试拌,首先由现场人员对混合料级配及油石比发表意见,如有不同意见,应适当调整再进行观察,力求意见一致。

然后用此沥青混合料在试验段上试铺,进一步观察摊铺、碾压过程和成型沥青混合料的表面状况,判断沥青混合料的级配及油石比,如不满意,也应适当调整,重新试拌试铺,直至满意为止。

另一方面,试验室密切配合现场指挥在拌合楼或摊铺机旁取沥青混合料试样,进行马歇尔试验,检验是否符合标准要求。

同时还应进行高温稳定性及水稳性验证。

只有所有指标全部合格,才能交付生产使用。

在试铺试验段时,试验室还应在现场取样进行抽提试验,再次检验实际级配和油石比是否合格。

同时按照规范规定的试验段铺筑要求,进行各种试验。

各项试验结果合格后,可以认为生产配合比得到验证,是可行的。

试验室据此编写配合比设计报告及试拌试铺总结,得出标准配合比。

生产配合比验证阶段得出的标准配合比,其力学性能,包括动稳定度和稳定度比目标配合比阶段有较为明显的提高。

在G321线高要小湘至封开涌口段路面大修工程设计过程中,负责该项目的肇庆市公路勘察设计院委托鼎星公路监理有限公司试验检测中心进行目标配合比设计(AC-16C普通沥青),在配合比验证阶段,制作过二十组车辙试件,没有一组试件动稳定超过1000次/分钟。

开工后,施工单位采用相同的原材料,在摊铺现场取样送到该检测中心进行动稳定度检测共四次,全部大于1100次/分钟。

对比分析这种现象后认为:

原材料经拌合楼加热、除尘后,集料中的粉尘含量大幅度减少,沥青矿粉结合料的质量大为改善,沥青混合料整体性加强,动稳定度增大。

五.矿粉和回收粉

(一)矿粉

沥青混合料的矿粉必须采用石灰岩或岩浆岩中的强基性岩等憎水性石料经磨细得到的矿粉,原料石中的泥土杂质应除净。

规范对矿粉的质量要求见表6。

矿粉在沥青混合料中起到重要作用,矿粉要适量,少了不足以形成足够的比表面积吸附沥青,矿粉过多又会胶泥成团,致使路面胶泥离析,同样造成不良后果。

沥青混合料中矿粉的用量应少于沥青用量(SMA除外)。

矿粉的作用就是吸附沥青。

沥青是依靠矿粉非常大的比表面积与矿粉粘附,形成薄沥青膜。

缺乏矿粉,就如沥青碎石混合料,沥青多了必然产生流淌现象,所以它的沥青用量很少。

真正起到沥青混合料结合作用的,不是沥青结合料,而是沥青矿粉胶泥混合料。

粗、细集料是通过沥青矿粉胶泥混合料结合成一个整体的。

这是矿粉最基本的作用。

所以矿粉和沥青粘附性的好坏是评价矿粉质量的首要因素。

为了保证有比较大的比表面积,所以规范对矿粉的磨细程度有一定的规定,其中通过0.075mm的部分不能小于75%(高速公路和一级公路路);从粒度范围要求可知,即使100%通过0.075mm筛孔也是满足要求的。

但是矿粉并非越细越好,矿粉越细,比表面积越大,吸附的沥青就增多,沥青用量增多导致矿料表面沥青膜太厚,存在自由沥青,将严重影响集料之间的嵌挤,成为集料之间滑动的润滑剂,降低沥青混合料的抗剪强度,在重载交通作用下,很容易产生车辙变形,因此欧洲CEN标准规定矿粉的比表面积不大于140m²/kg。

为了使矿粉在拌合时容易分散,称量时能迅速从矿粉罐中流出,矿粉必须是干燥的,含水量不大于1%。

(二)回收粉

进口沥青混合料拌合楼一般要求对干燥筒中吸出的粉尘回收利用,用来充当部分矿粉。

在西方国家,由于集料在出厂前都经过严格的筛选和冲洗,因此从干燥筒中吸出的是石料间碰撞产生的石屑或天然砂中的一些细颗粒组成的混合物,用它来代替部分矿粉,无论从经济或路用性能来讲都是合适的。

但是在我国大部分地区情况则有所不同,不但粗集料表面附着有相当数量的杂质,而且砂和石屑都不能保证泥土和杂质含量达到要求。

因此,回收粉中含有土和其它有害杂质,不但级配不稳定,而且亲水系数、塑性指数等指标都达不到要求。

下表为用回收粉代替30%矿粉的AC-20C沥青混合料与用纯矿粉的AC-20C沥青混合料的残留稳定度对比:

表6沥青混合料用矿粉质量要求

项目

单位

高速公路、一级公路

其他等级公路

试验方法

表观密度,不小于

t/m3

2.50

2.45

T0352

含水量,不大于

%

1

1

T0103烘干法

粒度范围<0.6mm

<0.15mm

<0.075mm

%

%

%

100

90~100

75~100

100

90~100

70~100

T0351

外观

-

无团粒结块

-

-

亲水系数

-

<1

-

T0353

塑性指数

%

<4

-

T0354

加热安定性

-

实测记录

-

T0355

 

表7:

残留稳定度对比

混合料AC-20C

稳定度

残留稳定度(%)

30min

48h

采用纯矿粉

12.7

10.3

81.1

30%回收粉+70%矿粉

11.5

7.7

67.0

表7说明回收粉代替30%矿粉对残留稳定度的影响相当大,可以预见如果采用回收粉代替50%矿粉,那么残留稳定度将更小。

但是,目前许多拌合楼都对回收粉全部利用,而且回收粉数量多到可以100%代替矿粉。

回收粉数量多从侧面也反映出集料中杂质或土含量过多这一实际情况。

另一方面,在集料生产水平有了很大提高的基础上,若还是将质量较好的回收粉全部废弃,既污染环境,又造成浪费。

规范规定:

拌合机的粉尘可作为矿粉的一部分回收使用,但每盘用量不得超过填料总量的25%,掺有粉尘的填料塑性指数不得大于4%。

从某高速公路沥青拌和站取得的矿粉和回收粉,实测各项指标见下表:

表8:

性能指标

矿粉

回收粉

密度(g/cm3)

2.711

2.590

亲数系数

0.64

0.66

亚甲蓝试验值(MBV)

0.25

1.00

平均粒径(μm)

7.35

6.60

由上表可知:

回收粉的密度比矿粉小,另外,回收粉中含有粘土等物质,其亲水系数大于矿粉,从亚甲蓝试验和粒径分析可知,回收粉粒径小于矿粉。

1.高温性能

对掺有矿粉或回收粉的沥青混合料进行车辙试验,沥青混合料类型采用AC-20C(普通沥青),4.4%油石比,粉胶比分别为:

1.0、1.2、1.6。

每组三个试件,见表9:

从表9可知:

粉胶比较小的情况下,掺加矿粉或回收粉的沥青混合料动稳定度并没有多大区别,掺回收粉的混合料动稳定度还大于掺矿粉的混合料。

在油石比等条件相同的情况下,回收粉比表面积大于矿粉,形成的沥青膜较薄,因此,沥青混合料抗车辙能力较强。

随着粉胶比增大,回收粉对动稳定度的不利影响逐渐加大,掺加回收粉的沥青混合料的动稳定度已经明显小于掺加矿粉的沥青混合料。

因此,粉胶比较小时,可以用回收粉代替矿粉使用;但在粉胶比比较大时,回收粉对沥青混合料的高温抗车辙能力有较明显损害,应尽量少用或不用回收粉。

表9:

混合料

粉胶比1.0

粉胶比1.2

粉胶比1.6

矿粉

回收粉

矿粉

回收粉

矿粉

回收粉

动稳定度(次/mm)

1349

1569

1665

1086

1344

1013

2.水稳定性

对掺加不同矿粉和回收粉的沥青混合料进行冻融劈裂试验,沥青混合料类型为:

AC-20C(普通沥青),每组三个试件,结果见表10:

从表中数据可知:

粉胶比为1.0时,掺加回收粉的沥青混合料的TSR比掺矿粉的沥青混合料稍大,表明此时使用回收粉对水稳定性并无损害,相反还可以稍微改善抗水损害能力;当粉胶比为1.6时,掺加回收粉的沥青混合料的TSR已经大大低于掺矿粉的沥青混合料。

此时,回收粉对水稳定性的负面影响已明显表露。

这是和回收粉中含有较多亲水性物质(粘土)密切相关。

粉胶比较小时,回收粉中的亲水性物质作用尚不明显,随着粉胶比增大,回收粉含量增加,亲水性物质开始发挥显著作用,造成水稳定性急剧下降。

因此,在粉胶比较大、填料用量较高的情况下,从保护沥青混合料水稳定性的角度出发,应放弃使用回收粉。

实际工程应用中,可根据实际情况适当采用经严格质量控制的回收粉,按规范要求需经试验确定其塑性指数是否达标,这样既能保证沥青混合料的质量,又可节约建设资金。

表10:

混合料

粉胶比1.0

粉胶比1.6

矿粉

回收粉

矿粉

回收粉

条件

冻融

干燥

冻融

干燥

冻融

劈裂

冻融

劈裂

劈裂强度(MPa)

0.63

0.75

0.76

0.87

0.72

0.80

0.78

1.03

TSR(%)

84.0

87.4

90.0

75.7

六.生产过程中配合比的调整

«公路沥青路面施工技术规范»JTJF40—2004规定:

“经设计确定的标准配合比在施工过程中不得随意变更。

生产过程中应加强跟踪检测,严格控制进场材料的质量,如遇材料发生变化并经检测沥青混合料的矿料级配马歇尔技术指标不符合要求时,应及时调整配合比,使沥青混合料的质量符合要求并保持相对稳定,必要时重新进行配比设计。

(一)含水量

规范规定:

“拌合厂应具有完备的排水设施。

各种集料必须分隔储存,细集料场应设防雨顶棚,料场及场内道路应作硬底化处理,严禁泥土污染集料。

”在很多建设项目,施工单位在“搭雨棚”和“硬底化”两点上不愿投入资金。

雨天,场地泥泞,泥浆和泥块混入集料中,影响其粘附性,导致水损害。

没有雨棚,石屑的含水量随天气波动较大。

连续晴天,含水量低,集料烘干效果好,除尘效率高,马歇尔指标能符合质量技术要求;遇到雨天,含水量增大,烘干不彻底,除尘效率低,粉料含量增多,往往会导致空隙率偏低、饱和度偏高、稳定度下降、流值升高和粉胶比偏高。

直接导致对水稳性和高温稳定性的损害。

要烘干含水量高的石屑,燃料的消耗累积起来是一笔不小的数额。

针对变化后的实测指标调整配合比,刚刚恢复正常,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 互联网

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1