金属材料学课后答案较全.docx

上传人:b****4 文档编号:3666717 上传时间:2022-11-24 格式:DOCX 页数:17 大小:33.63KB
下载 相关 举报
金属材料学课后答案较全.docx_第1页
第1页 / 共17页
金属材料学课后答案较全.docx_第2页
第2页 / 共17页
金属材料学课后答案较全.docx_第3页
第3页 / 共17页
金属材料学课后答案较全.docx_第4页
第4页 / 共17页
金属材料学课后答案较全.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

金属材料学课后答案较全.docx

《金属材料学课后答案较全.docx》由会员分享,可在线阅读,更多相关《金属材料学课后答案较全.docx(17页珍藏版)》请在冰豆网上搜索。

金属材料学课后答案较全.docx

金属材料学课后答案较全

金属材料学课后答案(较全)

第一章

1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?

答:

S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。

S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;

P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。

2.钢中的碳化物按点阵结构分为哪两大类?

各有什么特点?

答:

简单点阵结构和复杂点阵结构

简单点阵结构的特点:

硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:

硬度较低、熔点较低、稳定性较差。

3.简述合金钢中碳化物形成规律。

答:

①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:

完全互溶:

原子尺寸、电化学因素均相似;有限溶解:

一般K都能溶解其它元素,形成复合碳化物。

③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。

4.合金元素对Fe-C相图的S、E点有什么影响?

这种影响意味着什么?

答:

A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。

S点左移意味着_____减小,E点左移意味着出现_______降低。

(左下方;左上方)(共析碳量;莱氏体的C量)

5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。

答:

退火态:

非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。

优先形成碳化物,余量溶入基体。

淬火态:

合金元素的分布与淬火工艺有关。

溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。

回火态:

低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。

非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。

6.有哪些合金元素强烈阻止奥氏体晶粒的长大?

阻止奥氏体晶粒长大有什么好处?

答:

Ti、Nb、V等强碳化物形成元素(好处):

能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。

7.哪些合金元素能显著提高钢的淬透性?

提高钢的淬透性有何作用?

答:

在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:

Mn、Mo、Cr、Si、Ni等。

作用:

一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

8.能明显提高回火稳定性的合金元素有哪些?

提高钢的回火稳定性有什么作用?

答:

提高回火稳定性的合金元素:

Cr、Mn、Ni、Mo、W、V、Si

作用:

提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。

9.第一类回火脆性和第二类回火脆性是在什么条件下产生的?

如何减轻和消除?

答:

第一类回火脆性:

脆性特征:

①不可逆;②与回火后冷速无关;③断口为晶界脆断。

产生原因:

钢在200-350℃回火时,Fe3C薄膜在奥氏体晶界形成,削弱了晶界强度;杂质元素P、S、Bi等偏聚晶界,降低了晶界的结合强度。

防止措施:

①降低钢中杂质元素的含量;②用Al脱氧或加入Nb(铌)、V、Ti等合金元素细化奥氏体晶粒;③加入Cr、Si调整温度范围;④采用等温淬火代替淬火回火工艺。

第二类回火脆性:

脆性特征:

①可逆;②回火后满冷产生,快冷抑制;③断口为晶界脆断。

产生原因:

钢在450-650℃回火时,杂质元素Sb、S、A或N、P等偏聚于晶界,形成网状或片状化合物,降低了晶界强度。

高于回火脆性温度,杂质元素扩散离开了晶界或化合物分解了;快冷抑制了杂质元素的扩散。

防止措施:

①降低钢中的杂质元素;②加入能细化A晶粒的元素(Nb、V、Ti)③加入适量的Mo、W元素;④避免在第二类回火脆性温度范围回火。

10.就合金元素对铁素体力学性能、碳化物形成倾向、奥氏体晶粒长大倾向、淬透性、回火稳定性和回火脆性等几个方面总结下列元素的作用:

Si、Mn、Cr、Mo、W、V、Ni。

答:

Si:

①Si是铁素体形成元素,固溶强化效果显著;(强度增加,韧性减小)②Si是非碳化物形成元素,增大钢中的碳活度,所以含Si钢的脱C倾向和石墨化倾向较大;③Si量少时,如果以化合物形式存在,则阻止奥氏体晶粒长大,从而细化A晶粒,同时增大了钢的强度和韧性;

④Si提高了钢的淬透性,使工件得到均匀而良好的力学性能。

在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

⑤Si提高钢的低温回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;⑥Si能够防止第一类回火脆性。

Mn:

①Mn强化铁素体,在低合金普通结构钢中固溶强化效果较好;(强度增加,韧性减小)②Mn是奥氏体形成元素,促进A晶粒长大,增大钢的过热敏感性;③Mn使A等温转变曲线右移,提高钢的淬透性;

④Mn提高钢的回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;⑤Mn促进有害元素在晶界上的偏聚,增大钢回火脆性的倾向。

Cr:

①Cr是铁素体形成元素,固溶强化效果显著;(强度增加,韧性减小)②Cr是碳化物形成元素,能细化晶粒,改善碳化物的均匀性;③Cr阻止相变时碳化物的形核长大,所以提高钢的淬透性;

④Cr提高回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;⑤Cr促进杂质原子偏聚,增大回火脆性倾向;Mo:

(W类似于Mo)

①是铁素体形成元素,固溶强化效果显著;(强度增加,韧性减小)

②是较强碳化物形成元素,所以能细化晶粒,改善碳化物的均匀性,大大提高钢的回火稳定性;

③阻止奥氏体晶粒长大,细化A晶粒,同时增大了钢的强度和韧性;

④能提高钢的淬透性,使工件得到均匀而良好的力学性能。

在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

⑤能有效地抑制有害元素的偏聚,是消除或减轻钢第二类回火脆性的有效元素。

V:

(Ti、Nb类似于V)

①是铁素体形成元素,固溶强化效果显著;(强度增加,韧性减小)

②是强碳化物形成元素,形成的VC质点稳定性好,弥散分布,能有效提高钢的热强性和回火稳定性;

③阻止A晶粒长大的作用显著,细化A晶粒,同时增大了钢的强度和韧性;④提高钢的淬透性,消除回火脆性。

Ni:

①是奥氏体形成元素,促进晶粒长大,增大钢的过热敏感性;(强度增加,韧性增加)②是非碳化物形成元素,增大钢中的碳活度,所以含Ni钢的脱C倾向和石墨化倾向较大;③对A晶粒长大的影响不大;

④能提高钢的淬透性,使工件得到均匀而良好的力学性能。

在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。

⑤提高回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;⑥促进钢中有害元素的偏聚,增大钢的回火脆性。

总结:

SiMnCrMoWVNiF的力学性能K形成倾向A晶粒长大倾向淬透性回火稳定性回火脆性增加强度,减小韧性增加强度、韧性同上增加强度,减小韧性中强K形成元素阻碍作用中等增加提高大大降低同上同上增加强度、韧性非K形成元素影响不大增加影响不大促进非K形弱K形中强K成元素成元素形成元素细化增加促进增加阻碍作用中等增加提高促进中强K强K形形成元成元素素阻碍作用中等增加提高降低大大阻碍增加提高降低提高低提高温回火推迟低温回脆,促进高温回脆促进

11.根据合金元素在钢中的作用,从淬透性、回火稳定性、奥氏体晶粒长大倾向、韧性和回火脆性等方面比较下列钢号的性能:

40Cr、40CrNi、40CrMn、40CrNiMo答:

①淬透性:

40CrNiMo>40CrMn>40CrNi>40Cr

(因为在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:

Mn、Mo、Cr、Si、Ni,而合金元素的复合作用更大。

②回火稳定性:

40CrNiMo>40CrMn>40CrNi>40Cr

③奥氏体晶粒长大倾向:

40CrMn>40Cr>40CrNi>40CrNiMo

④韧性:

40CrNiMo>40CrNi>40CrMn>40Cr(Ni能够改善基体的韧度)⑤回火脆性:

40CrNi>40CrMn>40Cr>40CrNiMo(Mo降低回火脆性)

12.为什么W、Mo、V等元素对珠光体转变阻止作用大,而对贝氏体转变影响不大?

答:

对于珠光体转变,不仅需要C的扩散和重新分布,而且还需要W、Mo、V等K形成元素的扩散,而间隙原子碳在A中的扩散激活能远小于W、Mo、V等置换原子的扩散激活能,所以W、Mo、V等K形成元素扩散是珠光体转变时碳化物形核的控制因素。

V主要是通过推迟碳化物形核与长大来提高过冷奥氏体的稳定性

W、Mo除了推迟碳化物形核与长大外,还增大了固溶体原子间的结合力、铁的自扩散激活能,减缓了C的扩散。

贝氏体转变是一种半扩散型相变,除了间隙原子碳能作长距离扩散外,W、Mo、V等置换原子都不能显著地扩散。

W、Mo、V增加了C在y相中的扩散激活能,降低了扩散系数,推迟了贝氏体转变,但作用比Cr、Mn、Ni小。

13.为什么钢的合金化基本原则是“复合加入”?

试举两例说明合金元素复合作用的机理。

答:

因为合金元素能对某些方面起积极的作用,但许多情况下还有不希望的副作用,因此材料的合金化设计都存在不可避免的矛盾。

合金元素有共性的问题,但也有不同的个性。

不同元素的复合,其作用是不同的,一般都不是简单的线性关系,而是相互补充,相互加强。

所以通过合金元素的复合能够趋利避害,使钢获得优秀的综合性能。

例子:

①Nb-V复合合金化:

由于Nb的化合物稳定性好,其完全溶解的温度可达1325-1360℃。

所以在轧制或锻造温度下仍有未溶的Nb,能有效地阻止高温加热时A晶粒的长大,而V的作用主要是沉淀析出强化。

②Mn-V复合:

Mn有过热倾向,而V是减弱了Mn的作用;Mn能降低碳活度,使稳定性很好的VC溶点降低,从而在淬火温度下VC也能溶解许多,使钢获得较好的淬透性和回火稳定性。

14.合金元素V在某些情况下能起到降低淬透性的作用,为什么?

而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?

答:

钒和碳、氨、氧有极强的亲和力,与之形成相应的稳定化合物。

钒在钢中主要以碳化物的形式存在。

其主要作用是细化钢的组织和晶粒,降低钢的强度和韧性。

当在高温溶入固溶体时,增加淬透性;反之,如以碳化物形式存在时,降低淬透性。

15.怎样理解“合金钢与碳钢的强度性能差异,主要不在于合金元素本身的强化作用,而在于合金元素对钢相变过程的影响。

并且合金元素的良好作用,只有在进行适当的热处理条件下才能表现出来”?

16.合金元素提高钢的韧度主要有哪些途径?

答:

①细化奥氏体晶粒-----如Ti、V、Mo②提高钢的回火稳定性-----如强K形成元素③改善基体韧度-----------Ni

④细化碳化物-------------适量的Cr、V⑤降低或消除钢的回火脆性—W、Mo

⑥在保证强度水平下,适当降低含碳量,提高冶金质量⑦通过合金化形成一定量的残余奥氏体17.40Cr、40CrNi、40CrNiMo钢,其油淬临界淬透直径Dc分别为25-30mm、40-60mm、60-100mm,试解释淬透性成倍增大的现象。

答:

在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:

Mn、Mo、Cr、Si、Ni等。

Cr、Ni、Mo都能提高淬透性,40Cr、40CrNi、40CrNiMo单一加入到复合加入,淬透性从小到大。

较多的Cr和Ni的适当配合可大大提高钢的淬透性,而Mo提高淬透性的作用非常显著。

18.钢的强化机制有哪些?

为什么一般钢的强化工艺都采用淬火-回火?

答:

四种强化机制:

固溶强化、位错强化、细晶强化和第二相弥散强化。

因为淬火+回火工艺充分利用了细晶强化,固溶强化、位错强化、第二相强化这四种强化机制。

(1)淬火后获得的马氏体是碳在α-Fe中的过饱和间隙固溶体,碳原子起到了间隙固溶强化效应。

(2)马氏体形成后,奥氏体被分割成许多较小的取向不同的区域,产生了细晶强化作用。

(3)淬火形成马氏体时,马氏体中的位错密度增高,从而产生位错强化效应。

(4)淬火后回火时析出的碳化物造成强烈的第二相强化,同时也使钢的韧性得到了改善。

综上所述:

无论是碳钢还是合金钢,在淬火-回火时充分利用了强化材料的四种机制,从而使钢的机械性能的潜力得到了充分的发挥。

所以获得马氏体并进行相应的回火是钢的最经济最有效的综合强化手段。

19.试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。

答:

①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于0.4%,所以含0.4%C、13%Cr的40Cr13不锈钢就属于过共析钢。

②Cr使E点左移,意味着出现莱氏体的碳含量减小。

在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。

但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。

20.试解释含Mn稍高的钢易过热;而含Si的钢淬火加热温度应稍高,且冷作硬化率较高,不利于冷变形加工。

答:

Mn是奥氏体形成元素,降低钢的A1温度,促进晶粒长大,增大钢的过热敏感性;Si是铁素体形成元素,提高了钢的A1温度,所以含Si钢往往要相应地提高淬火温度。

冷作硬化率高,材料的冷成型性差。

合金元素溶入基体,点阵产生不同程度的畸变,使冷作硬化率提高,钢的延展性下降。

21.什么叫钢的内吸附现象?

其机理和主要影响因素是什么?

答:

合金元素溶入基体后,与晶体缺陷产生交互作用,使这些合金元素发生偏聚或内吸附,使偏聚元素在缺陷处的浓度大于基体中的平均浓度,这种现象称为内吸附现象。

机理:

从晶体结构上来说,缺陷处原子排列疏松、不规则,溶质原子容易存在;从体系能量角度上分析,溶质原子在缺陷处的偏聚,使系统自由能降低,符合自然界最小自由能原理。

从热力学上说,该过程是自发进行的,其驱动力是溶质原子在缺陷和晶内处的畸变能之差。

影响因素:

①温度:

随着温度的下降,内吸附强烈;②时间:

通过控制时间因素来控制内吸附;

③缺陷类型:

缺陷越混乱,畸变能之差越大,吸附也越强烈;

④其他元素:

不同元素的吸附作用是不同的,也有优先吸附的问题;⑤点阵类型:

基体的点阵类型对间隙原子有影响。

22.试述钢中置换固溶体和间隙固溶体形成的规律

答:

置换固溶体的形成的规律:

决定组元在置换固溶体中的溶解度因素是点阵结构、原子半径和电子因素,无限固溶必须使这些因素相同或相似.

①Ni、Mn、Co与y-Fe的点阵结构、原子半径和电子结构相似,即无限固溶;②Cr、V与α-Fe的点阵结构、原子半径和电子结构相似,形成无限固溶体;③Cu和γ-Fe点阵结构、原子半径相近,但电子结构差别大——有限固溶;

④原子半径对溶解度影响:

ΔR≤±8%,可以形成无限固溶;≤±15%,形成有限固溶;>±15%,溶解度极小。

间隙固溶体形成的规律:

①间隙固溶体总是有限固溶体,其溶解度取决于溶剂金属的晶体结构和间隙元素的原子尺寸;②间隙原子在固溶体中总是优先占据有利的位置;③间隙原子的溶解度随溶质原子的尺寸的减小而增大;④同一溶剂金属不同的点阵结构,溶解度是不同的,C、N原子在y-Fe中的溶解度高于a-Fe。

23.在相同成分的粗晶粒和细晶粒钢中,偏聚元素的偏聚程度有什么不同?

24.试述金属材料的环境协调性设计的思路

答:

金属材料的使用,不仅要考虑产品的性能要求,更应考虑材料在生命周期内与环境的协

调性。

将LCA方法应用到材料设计过程中产生的新概念,它要求在设计时要充分兼顾性能、质量、成本和环境协调性,从环境协调性的角度对材料设计提出指标及建议。

尽量不使用环境协调性不好的元素,即将枯竭性元素和对生态环境及人体有害作用的元素。

25.什么叫简单合金、通用合金?

试述其合金化设计思想及其意义。

答:

简单合金:

组元组成简单的合金系。

设计化思想:

通过选择适当的元素,不含有害元素、不含枯竭元素和控制热加工工艺来改变材料的性能。

简单合金在成分设计上有几个特点:

合金组元简单,再生循环过程中容易分选;原则上不加入目前还不能精炼方法除去的元素;尽量不适用环境协调性不好的合金元素。

意义:

不含对人体及生态环境有害的元素,不含枯竭性元素,并且主要元素在地球上的储量相当大,并且容易提取。

所生产的材料既具有良好的力学性能,又有好的再生循环性。

通用合金:

是指通过调整元素含量能在大范围内改变材料性能,且元素数最少的合金系。

设计思想:

合金的种类越多,再生循环就越困难。

最理想的情况是所有金属制品用一种合金系来制造,通过改变成分配比改变材料性能。

意义:

这种通用合金能满足对材料要求的通用性能,如耐热性、耐腐蚀性和高强度等。

合金在具体用途中的性能要求则可以通过不同的热处理等方法来实现。

通过调整成分配比开发出性能更加优异、附加值更高的再生材料。

26.与碳素钢相比,一般情况下合金钢有哪些主要优缺点?

答:

优点:

晶粒细化、淬透性高、回火稳定性好;

缺点:

合金元素的加入使钢的冶炼以及加工工艺性能比碳素钢差,价格也较为昂贵。

而且回火脆性倾向也较大。

第二章工程结构钢

1.叙述构件用钢一般的服役条件、加工特点和性能要求。

答:

服役条件:

①工程结构件长期受静载;②互相无相对运动受大气(海水)的侵蚀;③有些构件受疲劳冲击;④一般在-50~100℃范围内使用;

加工特点:

焊接是构成金属结构的常用方法;一般都要经过如剪切、冲孔、热弯、深冲等成型工艺。

性能要求:

①足够的强度与韧度(特别是低温韧度);②良好的焊接性和成型工艺性;③良好的耐腐蚀性;

2.低碳钢中淬火时效和应变时效的机理是什么?

对构件有何危害?

答:

构件用钢加热到Ac1以上淬火或塑性变形后,在放置过程中,强度、硬度上升,塑性、韧性下降,韧脆转变温度上升,这种现象分别称为淬火时效和应变时效。

产生的原因:

C、N等间隙原子偏聚或内吸附于位错等晶体缺陷处。

提高硬度、降低塑性和韧度。

危害:

在生产中的弯角、卷边、冲孔、剪裁等过程中产生局部塑形变形的工艺操作,由于应变时效会使局部地区的断裂抗力降低,增加构件脆断的危险性。

应变时效还给冷变形工艺造成困难,往往因为裁剪边出现裂缝而报废。

3.为什么普低钢中基本上都含有不大于2.0%w(Mn)?

答:

加入Mn有固溶强化作用,每1%Mn能够使屈服强度增加33MPa。

但是由于Mn能降低A3温度,使奥氏体在更低的温度下转变为铁素体而有轻微细化铁素体晶粒的作用。

Mn的含量过多时,可大为降低塑韧性,所以Mn控制在<2.0%。

4.为什么贝氏体型普低钢多采用0.5%w(Mo)和微量B作为基本合金化元素?

答:

钢中的主要合金元素是保证在较宽的冷却速度范围内获得以贝氏体为主的组织。

当Mo大于0.3%时,能显著推迟珠光体的转变,而微量的B在奥氏体晶界上有偏析作用,可有效推迟铁素体的转变,并且对贝氏体转变推迟较少。

因此Mo、B是贝氏体钢中必不可少的元

素。

5.什么是微合金化钢?

微合金化元素的主要作用是什么?

答:

微合金化钢是指化学成分规范上明确列入需加入一种或几种碳氮化物形成元素的钢中。

作用:

Nb、V、Ti单元或复合是常用的,其作用主要有细化晶粒组织和析出强化。

微合金元素通过阻止加热时奥氏体晶粒长大和抑制奥氏体形变再结晶这两方面作用可使轧制后铁素体晶粒细化,从而具有较好的强韧度配合。

6.在汽车工业上广泛应用的双相钢,其成分、组织和性能特点是什么?

为什么能在汽车工业上得到大量应用,发展很快?

答:

主要成分:

~0.2%C,1.2~1.5%Si,0.8~1.5%Mn,~0.45%Cr,~0.4%Mo,少量V、Nb、Ti。

(质量分数)

组织:

F+M组织,F基体上分布不连续岛状混合型M(<20%)。

F中非常干净,C、N等间隙原子很少;C和Me大部分在M中.

性能特点:

低σ,且是连续屈服,无屈服平台和上、下屈服;均匀塑变能力强,总延伸率较大,冷加工性能好;加工硬化率n值大,成型后σ可达500~700MPa。

因为双相钢具有足够的冲压成型性,而且具备良好的塑性、韧度,一定的马氏体还可以保证提高钢的强度。

7.在低合金高强度工程结构钢中大多采用微合金元素(Nb、V、Ti等),它们的主要作用是什么?

答:

Nb、V、Ti单元或复合是常用的,其作用主要有细化晶粒组织和析出强化。

微合金元素通过阻止加热时奥氏体晶粒长大和抑制奥氏体形变再结晶这两方面作用可使轧制后铁素体晶粒细化,从而具有较好的强韧度配合。

第三章

3-2为什么说淬透性是评定钢结构性能的重要指标?

结构钢一般要经过淬火后才能使用。

淬透性好坏直接影响淬火后产品质量3-3调质钢中常用哪些合金元素?

这些合金元素各起什么作用?

Mn:

↑↑淬透性,但↑过热倾向,↑回脆倾向;Cr:

↑↑淬透性,↑回稳性,但↑回脆倾向;Ni:

↑基体韧度,Ni-Cr复合↑↑淬透性,↑回脆;Mo:

↑淬透性,↑回稳性,细晶,↓↓回脆倾向;V:

有效细晶,(↑淬透性),↓↓过热敏感性。

3-4机械制造结构钢和工程结构钢对使用性能和工艺性能上的要求有什么不同?

工程结构钢:

1、足够的强度与韧度(特别是低温韧度);2、良好的焊接性和成型工艺性;3、良好的耐腐蚀性;4、低的成本

机械制造结构钢:

1具有良好的力学性能不同零件,对钢强、塑、韧、疲劳、耐磨性等有不同要求2具有良好冷热加工工艺性如锻造、冲压、热处理、车、铣、刨、磨等3-5低碳马氏体钢在力学性能和工艺性上有哪些优点?

在应用上应注意些什么问题?

力学性能:

抗拉强度σb,1150~1500MPa;屈服强度σ,950~1250MPaψ≥40%;伸长率δ,≥10%;冲击韧度AK≥6J这些性能指标和中碳合金调质钢性能相当,常规的力学性能甚至优于调质钢。

工艺性能:

锻造温度淬火加自回火

局限性:

工作温度<200℃;强化后难以进行冷加工\\焊接等工序;只能用于中小件;淬火时变形大,要求严格的零件慎用.

3-6某工厂原来使用45MnNiV生产直径为8mm高强度调质钢筋,要求Rm>1450Mpa,ReL>1200Mpa,A>0.6%,热处理工艺是(920±20)℃油淬,(470±10)℃回火。

因该钢缺货,库存有25MnSi钢。

请考虑是否可以代用。

热处理工艺如何调整?

能代替,900℃油淬或水淬,200℃回火

3-7试述弹簧的服役条件和对弹簧钢的主要性能要求。

为什么低合金弹簧钢中碳含量一般在0.5%~0.75%(质量分数)之间?

服役条件:

储能减振、一般在动负荷下工作即在冲击、振动和长期均匀的周期改变应力下工作、也会在动静载荷作用下服役;

性能要求:

高的弹性极限及弹性减退抗力好,较高的屈服比;高的疲劳强度、足够的塑性和韧度;工艺性能要求有足够的淬透性;在某些环境下,还要求弹簧具有导电、无磁、耐高温和耐蚀等性能,良好的表面质量和冶金质量

总的来说是为了保证弹簧不但具有高的弹性极限﹑高的屈服极限和疲劳极限(弹簧钢含碳量要比调质钢高),还要有一定的塑性和韧性(含碳量太高必然影响塑性和韧性了)。

3-8弹簧为什么要求较高的冶金质量和表面质量?

弹簧的强度极限高是否也意味着弹簧的疲劳极限高,为什么?

要严格控制弹簧钢材料的内部缺陷,要保证具有良好的冶金质量和组织均匀性;因为弹簧工作时表面承受的应力为最大,所以不允许表面缺陷,表面缺陷往往会成为应力高度集中的地方和疲劳裂纹源,显著地降低弹簧的疲劳强度不一定高。

强度极限是在外力作用下进一步发生形变.是保持构件机械强度下能承受的最大应力,包括拉伸、压缩和剪切强度,不一定指弹性极限

3-9有些普通弹簧冷卷成型后为什么进行去应力退火?

车辆用板簧淬火后,为什么要用中温回火?

去应力退火的目的是:

a)消除金属丝冷拔加工和弹簧冷卷成形的内应力;b)稳定弹簧尺寸,利用去应力退火来控制弹簧尺寸;

c)提高金属丝的抗拉强度和弹性极限;回火目的:

(1)减少或消除淬火内应力,防止工件变形或开裂。

(2)获得工艺要求的力学性能。

(3)稳定工件

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1