User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx

上传人:b****6 文档编号:3646243 上传时间:2022-11-24 格式:DOCX 页数:10 大小:165.79KB
下载 相关 举报
User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx_第1页
第1页 / 共10页
User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx_第2页
第2页 / 共10页
User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx_第3页
第3页 / 共10页
User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx_第4页
第4页 / 共10页
User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx

《User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx》由会员分享,可在线阅读,更多相关《User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx(10页珍藏版)》请在冰豆网上搜索。

User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx

User1realtimeinterestpredictionbasedCollaborativeFilteringandInteractiveComputing

Userreal-timeinterestpredictionbasedCollaborativeFilteringandInteractiveComputinginAcademicRecommendation

JieYu,HaihongZhao,andFangfangLiu

SchoolofComputerEngineeringandScience,ShanghaiUniversity,ShangHai200072,China

{jieyu,zhaohaihong,ffliu}@

Abstract.WiththerapiddevelopmentofInternet,theinformationandresourceofWebacademicdatabaseisgreatandexplosivegrowth,soitisdifficulttoquicklyandaccuratelyobtaininformationwhichmeetsindividualuser’sneeds.Webpersonalizationserviceseffectivelyalleviateuser'scognitiveburdenandinformationoverloadproblem.First,thisarticleproposesconceptsofuserknowledgeunitanduserknowledgeflowthatrepresentsusershort-terminterestandlong-terminterestrespectively.Second,existingmethodshavesomedefectswhichcan’tbesensitivetoperceiveuserinterestchangeandaccuratelypredictuserreal-timeinterest,weputforwardCollaborativeTimeWeight(CTW)andCollaborativeRelationWeight(CRW)tosolvethoseproblems.Meanwhileuserreal-timeinterestpredictionalgorithmisproposedbasedoncollaborativefilteringandinteractivecomputing.Finally,experimentalresultsdemonstratethatourmethodcanaccuratelycaptureuserreal-timeinterestsandalleviatetheuser’scognitiveburdeneffectively.

Keywords:

Webpersonalizationservices,Userknowledgeflow,Interactivecomputing,Collaborativefiltering,Userinterestprediction.

1Introduction

WiththerapiddevelopmentandpopularityofWebAcademicdatabase,itisattractingmoreandmoreattentionandbecomingthemainwayofobtainingandpropagationinformationandtechnology.Peoplecangetallthenecessaryresourcesfromtheacademicdatabase[1].ButduetoinformationandresourceofWebacademicdatabaseisgreatandexplosivegrowth,itisdifficulttoobtaintheinformationquicklyandaccuratelywhichmeetsindividualuser’sneeds.Webpersonalizedserviceeffectivesolutiontotheproblemofinformationoverloadandusercognitiveburden.Sohowtopredictandrepresentuserreal-timeinterestisakeyissue.

Inrecentyears,lotsofresearchworkabouthowtopredictandrepresentuser’sreal-timeinterestisbeingundertakenorhascompleted.First,inacquisitionandrepresentationofuserinterest,[2]proposeamethodofuserinformationextraction,representationandintegrationfrommultipledatasourcebasedrandomfield.[3]introduceshowtobuildaprobabilitymodel,andthentorepresentpreferencesoftheuser'sinterestaccordingtothismodel.[4]raisestopicofuserinformationofuserpreferencestorepresentuserinterestsolvingtheproblemofheavy-tailednetworkresourceswithpositiveandnegativeinteresttheory.Second,accordingtoresearchalotofliteratureinuserinterestprediction,[5]extenttheideaofbipartitenetworktoformathrivenetworkthentousethisnetworktopredictandexpressedinterest.[6-8]researchthedriftinguser’sinterestsandlawofchanginguser’sinterestsanduserinteresttrackingindividually.[9]usesBayesiannetworkstopredictusers'interestsandpreferences.[10]usesneuralnetworkstopredictusers'interestsandpreferences.[11]istopredicttheuserinterestsanddiscoveruserinterestvariationpointbymixedmodelwhichisprobabilitytheoryandquantumtheory.[12]utilizesbipartitenetworktodiscoverthecollaborativeusersthentopredictuserreal-timeinterestsandpreferencesaccordingtocollaborativeusers.

Mostofmethodsexistingcurrentlycan’teffectivelyandexactlypredicttheuserreal-timeinterestintheacademicdatabase.Forexample,predictionmethodsbasedonBayesian,Neuralnetworkaremostlyofflinethatcan’texactlypredicttheuser'sreal-timeinterest.Onthebipartitenetworks,quantumtheory,althoughtheycanachievereal-timeefficiency,butalgorithmcomplexityandimplementationdifficultiescan’tneglect.Atthesametimeinthefieldofacademicrecommendation,studyofuserinterestpredictionisrelativelyrare,especiallyinuserreal-timeinterest.Basedonthisbackground,thispaperproposesanewmethodtodescribeandrepresentuserinterestandpredictuserreal-timeinterest.First,semanticcontentofsomesessionsinteractingwithWebScienceDatabaseistobuilduserknowledgeunittoaccuratedescriptusershort-terminterest.Computingthesemanticinformationsimilaritybetweenuserknowledgeunitandlogicalreasoningtogenerateuserknowledgeflowwhichistorepresentsuserlong-terminterest.Secondly,basedonsimilarityofuserknowledgeflowsandclusteringalgorithmtodiscovercollaborativeusersofcurrentactivityuser.Finally,accordingtocollaborativeusers,consideringCTWandCRWbetweencollaborativeusers,weproposeaalgorithmcallinguserreal-timeinterestpredictingbasedoncollaborativefilteringandinteractivecomputing.ThegreatestcontributionofthispapertakesintoaccountnotonlyCTWwhichmeanstimesemanticsofcollaborativeusers,butalsoCRWwhichstandardforrelationshipsemanticofcollaborativeusers.

Therestofthispaperisorganizedasfollows.Somerelatedtermsareintroducedinsection2.Section3describesourapproachhowtopredictuserreal-timeinterest.Experimentalresultsaregiveninsection4.Finally,weconcludeourworkinSection5.

2RelateTerms

Inthispaper,weproposeuserreal-timeinterestingpredictionbasedcollaborativefilteringandinteractivecomputinginacademicrecommendation.Beforethepredictionalgorithmisdescribed,wefirstintroductionsomerelativeterms.Thedefinitionsaregivenasfollows:

Definition1.(UserKnowledgeUnitforPersonalizedService,UKUPS)

UKUPSisatwo-tupleN=(C,R)where

--C={c1,c2,…,cn}isafinitenon-emptysetofconcepts.Eachconceptsisatwo-tupleci=(s,cw)where

--sdefinesthesemanticscontentoftheconcept;

--cwdefinestheweightoftheconcept.

--R={r1,r2,…,rm}isafinitenon-emptysetofassociationrelationbetweenconcepts,Eachconceptsisatwo-tupleri={,rw}where

--

Candisapairwhichdefinesthesemanticrelationbetweentwoconcepts;

--rwdefinestherelationdegreebetweencpandcq.

Definition2.(UserKnowledgeFlowforPersonalizedService,UKFPS)

UKFPSisasequentiallinkwithrichsemantics,whichisactivatedbyuser’sdemandsandchangeswiththedemands.

ThesequenceandsemanticofUKFPSisdefinitebyF=(U,S)where

--U={u1,u2,…,un]isasequenceofUKUPS.ThenodesinUKFPSrepresenttheWebresourceswhichmeetuser’sspecificrequirementsinsomesessionsduringafixedtimesection;

--S=definesthesemanticrelationshipsbetweenadjacentUKUPSsi=(,sw)where

--definesisapairwhichdefinesthesemanticrelationbetweentwoUKUPS

--swdefinestherelationshipdegreebetweenun-1andun

Definition3.(CollaborativeTimeWeight,CTW)

Infact,theinterestsofusersarechangingallthetime,andtherecentUKUPScanreflectuser’spreferencebetterthantheearlyones.Forexample,aresearchermaybeinterestedinthetheoryofknowledgefortheuserinterestingpredictionandcollaborativefiltering,buthemayprobablyswitchhisattentiontoresearchersofcurrentfield.GiventheunreliabilityofearlyUKUPS,theimpactcausedbyoutdatedUKUPSshouldbereducedtoitsimpactfactor.

Inthispaper,wewillconsiderthesequenceofUKUPSsthatrecentUKUPSshouldbeincreasetotheimpactfactor,incontrasttheoutdatedUKUPSreduced.WedefinitethosefactorsasCollaborativeTimeWeight(CTW).

Definition4.(CollaborativeRelationWeight,CRW)

TheoreticalstudyandquantitativeanalysisbasedonFacebooksitesfoundthatsocialnetworkinguserstosharemoreinformationfromtheweakties.Inthispaper,everycollaborativeuser’sinfluencefactorsofthecurrentlyactiveuserisdifferent,wethinkthatUKFPSoflowsimilarityuserwiththecurrentactiveuserismaybecurrentuserinterestedinformation,wewillincreasetheinfluencefactors.Viceversa,wereduce.ThisfactorisdefiniteasCollaborativeRelationWeight(CRW)

Definition5.(InteractiveComputingModel,ICM)

InteractiveComputingModelisatetradM=(S,I,O,F)where

-Sisanenumerablesetofstatesdescribingusers’browsingstates,eachofwhichreflectsuser’srecentinterestthatisdescribedbyUKUPS.

-Iisanenumerablesetofinputstates,whichdescribesuser’sbrowsingbehaviors.

-Oisanenumerablesetofoutputstates,whichdescribesthegeneratedUKUPS.

-F:

S×I->S×OisacomputablefunctionwithsemanticsofUKUPS.

3UserReal-TimeInterestingPrediction

Infact,userinterestischangingallthetime,andtherecentinterestcanreflectuser’spreferencebetterthantheearlyones.Forexample,aresearchermaybeinterestedinthetheoryoftheuserinterestpredictionandcollaborativefiltering,butthenhemayprobablyswitchhisattentiontoresearchersofcurrentfield.Manyeffortshavebeendoneonuserinterestpredictionandsomeachievementshavebeengained.However,existingmethodshavesomedefects.Theyareinsensitivetouserinterestchangeandcan’tbeaccuratepredictionuserinterest.Inaddition,theyareindependentofuser’sinteraction,whichmakeWebpersonalizedservicesunabletoprovideuserreal-timerequirementsinformationeffectively.Aimingatsolvingthesedefects,thispaperpresentsUKUPSandUKFPSwhichisgeneratebyICMtorepresentuserinterest,thenwegetthecollaborativeusersofcurrentactivityuseraccordingtosimilarityofUKFPSs.Finallywepredictthecurrentuserreal-timeinterestbasedoncollaborativefilteringandinteractivecomputingwhichisconsideringtheCT

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1