User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx
《User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx》由会员分享,可在线阅读,更多相关《User1 realtime interest prediction based Collaborative Filtering and Interactive Computing.docx(10页珍藏版)》请在冰豆网上搜索。
User1realtimeinterestpredictionbasedCollaborativeFilteringandInteractiveComputing
Userreal-timeinterestpredictionbasedCollaborativeFilteringandInteractiveComputinginAcademicRecommendation
JieYu,HaihongZhao,andFangfangLiu
SchoolofComputerEngineeringandScience,ShanghaiUniversity,ShangHai200072,China
{jieyu,zhaohaihong,ffliu}@
Abstract.WiththerapiddevelopmentofInternet,theinformationandresourceofWebacademicdatabaseisgreatandexplosivegrowth,soitisdifficulttoquicklyandaccuratelyobtaininformationwhichmeetsindividualuser’sneeds.Webpersonalizationserviceseffectivelyalleviateuser'scognitiveburdenandinformationoverloadproblem.First,thisarticleproposesconceptsofuserknowledgeunitanduserknowledgeflowthatrepresentsusershort-terminterestandlong-terminterestrespectively.Second,existingmethodshavesomedefectswhichcan’tbesensitivetoperceiveuserinterestchangeandaccuratelypredictuserreal-timeinterest,weputforwardCollaborativeTimeWeight(CTW)andCollaborativeRelationWeight(CRW)tosolvethoseproblems.Meanwhileuserreal-timeinterestpredictionalgorithmisproposedbasedoncollaborativefilteringandinteractivecomputing.Finally,experimentalresultsdemonstratethatourmethodcanaccuratelycaptureuserreal-timeinterestsandalleviatetheuser’scognitiveburdeneffectively.
Keywords:
Webpersonalizationservices,Userknowledgeflow,Interactivecomputing,Collaborativefiltering,Userinterestprediction.
1Introduction
WiththerapiddevelopmentandpopularityofWebAcademicdatabase,itisattractingmoreandmoreattentionandbecomingthemainwayofobtainingandpropagationinformationandtechnology.Peoplecangetallthenecessaryresourcesfromtheacademicdatabase[1].ButduetoinformationandresourceofWebacademicdatabaseisgreatandexplosivegrowth,itisdifficulttoobtaintheinformationquicklyandaccuratelywhichmeetsindividualuser’sneeds.Webpersonalizedserviceeffectivesolutiontotheproblemofinformationoverloadandusercognitiveburden.Sohowtopredictandrepresentuserreal-timeinterestisakeyissue.
Inrecentyears,lotsofresearchworkabouthowtopredictandrepresentuser’sreal-timeinterestisbeingundertakenorhascompleted.First,inacquisitionandrepresentationofuserinterest,[2]proposeamethodofuserinformationextraction,representationandintegrationfrommultipledatasourcebasedrandomfield.[3]introduceshowtobuildaprobabilitymodel,andthentorepresentpreferencesoftheuser'sinterestaccordingtothismodel.[4]raisestopicofuserinformationofuserpreferencestorepresentuserinterestsolvingtheproblemofheavy-tailednetworkresourceswithpositiveandnegativeinteresttheory.Second,accordingtoresearchalotofliteratureinuserinterestprediction,[5]extenttheideaofbipartitenetworktoformathrivenetworkthentousethisnetworktopredictandexpressedinterest.[6-8]researchthedriftinguser’sinterestsandlawofchanginguser’sinterestsanduserinteresttrackingindividually.[9]usesBayesiannetworkstopredictusers'interestsandpreferences.[10]usesneuralnetworkstopredictusers'interestsandpreferences.[11]istopredicttheuserinterestsanddiscoveruserinterestvariationpointbymixedmodelwhichisprobabilitytheoryandquantumtheory.[12]utilizesbipartitenetworktodiscoverthecollaborativeusersthentopredictuserreal-timeinterestsandpreferencesaccordingtocollaborativeusers.
Mostofmethodsexistingcurrentlycan’teffectivelyandexactlypredicttheuserreal-timeinterestintheacademicdatabase.Forexample,predictionmethodsbasedonBayesian,Neuralnetworkaremostlyofflinethatcan’texactlypredicttheuser'sreal-timeinterest.Onthebipartitenetworks,quantumtheory,althoughtheycanachievereal-timeefficiency,butalgorithmcomplexityandimplementationdifficultiescan’tneglect.Atthesametimeinthefieldofacademicrecommendation,studyofuserinterestpredictionisrelativelyrare,especiallyinuserreal-timeinterest.Basedonthisbackground,thispaperproposesanewmethodtodescribeandrepresentuserinterestandpredictuserreal-timeinterest.First,semanticcontentofsomesessionsinteractingwithWebScienceDatabaseistobuilduserknowledgeunittoaccuratedescriptusershort-terminterest.Computingthesemanticinformationsimilaritybetweenuserknowledgeunitandlogicalreasoningtogenerateuserknowledgeflowwhichistorepresentsuserlong-terminterest.Secondly,basedonsimilarityofuserknowledgeflowsandclusteringalgorithmtodiscovercollaborativeusersofcurrentactivityuser.Finally,accordingtocollaborativeusers,consideringCTWandCRWbetweencollaborativeusers,weproposeaalgorithmcallinguserreal-timeinterestpredictingbasedoncollaborativefilteringandinteractivecomputing.ThegreatestcontributionofthispapertakesintoaccountnotonlyCTWwhichmeanstimesemanticsofcollaborativeusers,butalsoCRWwhichstandardforrelationshipsemanticofcollaborativeusers.
Therestofthispaperisorganizedasfollows.Somerelatedtermsareintroducedinsection2.Section3describesourapproachhowtopredictuserreal-timeinterest.Experimentalresultsaregiveninsection4.Finally,weconcludeourworkinSection5.
2RelateTerms
Inthispaper,weproposeuserreal-timeinterestingpredictionbasedcollaborativefilteringandinteractivecomputinginacademicrecommendation.Beforethepredictionalgorithmisdescribed,wefirstintroductionsomerelativeterms.Thedefinitionsaregivenasfollows:
Definition1.(UserKnowledgeUnitforPersonalizedService,UKUPS)
UKUPSisatwo-tupleN=(C,R)where
--C={c1,c2,…,cn}isafinitenon-emptysetofconcepts.Eachconceptsisatwo-tupleci=(s,cw)where
--sdefinesthesemanticscontentoftheconcept;
--cwdefinestheweightoftheconcept.
--R={r1,r2,…,rm}isafinitenon-emptysetofassociationrelationbetweenconcepts,Eachconceptsisatwo-tupleri={,rw}where
--
Candisapairwhichdefinesthesemanticrelationbetweentwoconcepts;
--rwdefinestherelationdegreebetweencpandcq.
Definition2.(UserKnowledgeFlowforPersonalizedService,UKFPS)
UKFPSisasequentiallinkwithrichsemantics,whichisactivatedbyuser’sdemandsandchangeswiththedemands.
ThesequenceandsemanticofUKFPSisdefinitebyF=(U,S)where
--U={u1,u2,…,un]isasequenceofUKUPS.ThenodesinUKFPSrepresenttheWebresourceswhichmeetuser’sspecificrequirementsinsomesessionsduringafixedtimesection;
--S=definesthesemanticrelationshipsbetweenadjacentUKUPSsi=(,sw)where
--definesisapairwhichdefinesthesemanticrelationbetweentwoUKUPS
--swdefinestherelationshipdegreebetweenun-1andun
Definition3.(CollaborativeTimeWeight,CTW)
Infact,theinterestsofusersarechangingallthetime,andtherecentUKUPScanreflectuser’spreferencebetterthantheearlyones.Forexample,aresearchermaybeinterestedinthetheoryofknowledgefortheuserinterestingpredictionandcollaborativefiltering,buthemayprobablyswitchhisattentiontoresearchersofcurrentfield.GiventheunreliabilityofearlyUKUPS,theimpactcausedbyoutdatedUKUPSshouldbereducedtoitsimpactfactor.
Inthispaper,wewillconsiderthesequenceofUKUPSsthatrecentUKUPSshouldbeincreasetotheimpactfactor,incontrasttheoutdatedUKUPSreduced.WedefinitethosefactorsasCollaborativeTimeWeight(CTW).
Definition4.(CollaborativeRelationWeight,CRW)
TheoreticalstudyandquantitativeanalysisbasedonFacebooksitesfoundthatsocialnetworkinguserstosharemoreinformationfromtheweakties.Inthispaper,everycollaborativeuser’sinfluencefactorsofthecurrentlyactiveuserisdifferent,wethinkthatUKFPSoflowsimilarityuserwiththecurrentactiveuserismaybecurrentuserinterestedinformation,wewillincreasetheinfluencefactors.Viceversa,wereduce.ThisfactorisdefiniteasCollaborativeRelationWeight(CRW)
Definition5.(InteractiveComputingModel,ICM)
InteractiveComputingModelisatetradM=(S,I,O,F)where
-Sisanenumerablesetofstatesdescribingusers’browsingstates,eachofwhichreflectsuser’srecentinterestthatisdescribedbyUKUPS.
-Iisanenumerablesetofinputstates,whichdescribesuser’sbrowsingbehaviors.
-Oisanenumerablesetofoutputstates,whichdescribesthegeneratedUKUPS.
-F:
S×I->S×OisacomputablefunctionwithsemanticsofUKUPS.
3UserReal-TimeInterestingPrediction
Infact,userinterestischangingallthetime,andtherecentinterestcanreflectuser’spreferencebetterthantheearlyones.Forexample,aresearchermaybeinterestedinthetheoryoftheuserinterestpredictionandcollaborativefiltering,butthenhemayprobablyswitchhisattentiontoresearchersofcurrentfield.Manyeffortshavebeendoneonuserinterestpredictionandsomeachievementshavebeengained.However,existingmethodshavesomedefects.Theyareinsensitivetouserinterestchangeandcan’tbeaccuratepredictionuserinterest.Inaddition,theyareindependentofuser’sinteraction,whichmakeWebpersonalizedservicesunabletoprovideuserreal-timerequirementsinformationeffectively.Aimingatsolvingthesedefects,thispaperpresentsUKUPSandUKFPSwhichisgeneratebyICMtorepresentuserinterest,thenwegetthecollaborativeusersofcurrentactivityuseraccordingtosimilarityofUKFPSs.Finallywepredictthecurrentuserreal-timeinterestbasedoncollaborativefilteringandinteractivecomputingwhichisconsideringtheCT