锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx

上传人:b****5 文档编号:3608101 上传时间:2022-11-24 格式:DOCX 页数:86 大小:285.89KB
下载 相关 举报
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx_第1页
第1页 / 共86页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx_第2页
第2页 / 共86页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx_第3页
第3页 / 共86页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx_第4页
第4页 / 共86页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx_第5页
第5页 / 共86页
点击查看更多>>
下载资源
资源描述

锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx

《锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx》由会员分享,可在线阅读,更多相关《锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx(86页珍藏版)》请在冰豆网上搜索。

锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献.docx

锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献

CapacityFadeMechanismsandSideReactionsin

Lithium-IonBatteries

锂离子电池容量衰减机机理和副反应

PankajAroratandRalphE。

White*

作者:

PankajAroratandRalphE.White*

CenterForElectrochemicalEngineering,DepartmentofChemicalEngineering,UniversityofSouthCarolina,Columbia,SouthCarolina29208,USA

美国,南卡罗来纳,年哥伦比亚29208,南卡罗来纳大学,化学工程系,中心电化学工程

ABSTRACT

Thecapacityofalithium—ionbatterydecreasesduringcycling。

Thiscapacitylossorfadeoccursduetoseveraldifferentmechanismswhichareduetoorareassociatedwithunwantedsidereactionsthatoccurinthesebatteries。

Thesereactionsoccurduringoverchargeoroverdischargeandcauseelectrolytedecomposition,passivefilmformation,activematerialdissolution,andotherphenomena.Thesecapacitylossmechanismsarenotincludedinthepresentlithium-ionbatterymathematicalmodelsavailableintheopenliterature.Consequently,thesemodelscannotbeusedtopredictcellperformanceduringcyclingandunderabuseconditions.Thisarticlepresentsareviewofthecurrentliteratureoncapacityfademechanismsandattemptstodescribetheinformationneededandthedirectionsthatmaybetakentoincludethesemechanismsinadvancedlithium-ionbatterymodels.

 

Introduction

Thetypicallithium—ioncell(Fig.1)ismadeupofacokeorgraphitenegativeelectrode,anelectrolytewhichservesasanionicpathbetweenelectrodesandseparatesthetwomaterials,andametaloxide(suchasLiCoO2,LiMn2O4,orLiNiO2)positiveelectrode。

Thissecondary(rechargeable)lithium—ioncellhasbeencommercializedonlyrecently.Batteriesbasedonthisconcepthavereachedtheconsumermarket,andlithium—ionelectricvehiclebatteriesareunderstudyinindustry。

Thelithium—ionbatterymarkethasbeeninaperiodoftremendousgrowtheversinceSonyintroducedthefirstcommercialcellin1990。

Withenergydensityexceeding130Wh/kg(e。

g.,MatsushitaCGR17500)andcyclelifeofmorethan1000cycles(e.g。

Sony18650)inmanycases,thelithium-ionbatterysystemhasbecomeincreasinglypopularinapplicationssuchascellularphones,portablecomputers,andcamcorders.Asmorelithium—ionbatterymanufacturersenterthemarketandnewmaterialsaredeveloped,costreductionshouldspurgrowthinnewapplications.SeveralmanufacturerssuchasSonyCorporation,SanyoElectricCompany,MatsushitaElectricIndustrialCompany,MoliEnergyLimited,andA&TBatteryCorporationhavestartedmanufacturinglithium—ionbatteriesforcellularphonesandlaptopcomputers.Yoda1hasconsideredthisadvancementanddescribedafuturebatterysocietyinwhichthelithium—ionbatteryplaysadominantrole.

 

Severalmathematicalmodelsoftheselithium-ioncellshavebeenpublished。

Unfortunately,noneofthesemodelsincludecapacityfadeprocessesexplicitlyintheirmathematicaldescriptionofbatterybehavior.Theobjectiveofthepresentworkistoreviewthecurrentunderstandingofthemechanismsofcapacityfadeinlithium-ionbatteries.Advancesinmodelinglithium-ioncellsmustresultfromimprovementsinthefundamentalunderstandingoftheseprocessesandthecollectionofrelevantexperimentaldata.

 

Someoftheprocessesthatareknowntoleadtocapacityfadeinlithium—ioncellsarelithiumdeposition(overchargeconditions),electrolytedecomposition,activematerialdissolution,phasechangesintheinsertionelectrodematerials,andpassivefilmformationovertheelectrodeandcurrentcollectorsurfaces.Quantifyingthesedegradationprocesseswillimprovethepredictivecapabilityofbatterymodelsultimatelyleadingtolessexpensiveandhigherqualitybatteries。

Significantimprovementsarerequiredinperformancestandardssuchasenergydensityandcyclelife,whilemaintaininghighenvironmental,safety,andcoststandards。

Suchprogresswillrequireconsiderableadvancesinourunderstandingofelectrodeandelectrolytematerials,andthefundamentalphysicalandchemicalprocessesthatleadtocapacitylossandresistanceincreaseincommerciallithium—ionbatteries.Theprocessofdevelopingmathematicalmodelsforlithiumioncellsthatcontainthesecapacityfadeprocessesnotonlyprovidesatoolforbatterydesignbutalsoprovidesameansofunderstandingbetterhowthoseprocessesoccur。

 

PresentLithium-IonBatteryModels

Thedevelopmentofadetailedmathematicalmodelisimportanttothedesignandoptimizationoflithiumsecondarycellsandcriticalintheirscale—up。

Westdevelopedapseudotwo—dimensionalmodelofasingleporousinsertionelectrodeaccountingfortransportinthesolutionphaseforabinaryelectrolytewithconstantphysicalpropertiesanddiffusionoflithiumionsintothecylindricalelectrodeparticles.Theinsertionprocesswasassumedtobediffusionlimited,andhencecharge-transferresistanceattheinterfacebetweenelectrolyteandactivematerialwasneglected。

LaterMaoandWhitedevelopedasimilarmodelwiththeadditionofaseparatoradjacenttotheporousinsertionelectrode。

Thesemodelscoveronlyasingleporouselectrode;thus,theydonothavetheadvantagesofafull-cell—sandwichmodelforthetreatmentofcomplex,interactingphenomenabetweenthecelllayers.ThesemodelsconfinethemselvestotreatinginsertionintoTiS2withthekineticsfortheinsertionprocessassumedtobeinfinitelyfast。

SpotnitzaccountedforelectrodekineticsintheirmodelfordischargeoftheTiS2,intercalationcathode。

 

Thegalvanostaticchargeanddischargeofalithiummetal/solidpolymerseparator/insertionpositiveelectrodecellwasmodeledusingconcentrated—solutiontheorybyDoyle.Themodelisgeneralenoughtoincludeawiderangeofseparatormaterials,lithiumsalts,andcompositeinsertionelectrodes。

Concentrated-solutiontheoryisusedtodescribethetransportprocesses,asithasbeenconcludedthationpairingandionassociationareveryimportantinsolidpolymerelectrolytes。

Thisapproachalsoprovidesadvantagesoverdilutesolutiontheorytoaccountforvolumechanges.Butler—Volmer—typekineticexpressionswereusedinthismodeltoaccountforthekineticsofthecharge—transferprocessesateachelectrode。

ThepositiveelectrodeinsertionprocesswasdescribedusingPick’slawwithaconstantlithiumdiffusioncoefficientintheactivematerial。

Thevolumechangesinthesystemandfilmformationatthelithium/polymerinterfacewereneglectedandaverysimplisticcaseofconstantelectrodefilmresistanceswasconsidered。

Long—termdegradationofthecellduetoirreversiblereactions(sidereactions)orlossofinterfacialcontactisnotpredictableusingthismodel.

 

Fullerdevelopedageneralmodelforlithiumioninsertioncellsthatcanbeappliedtoanypairoflithium-ioninsertionelectrodesandanybinaryelectrolytesystemgiventherequisitephysicalpropertydata.Fullerworkdemonstratedtheimportanceofknowingthedependenceoftheopen-circuitpotentialonthestateofchargefortheinsertionmaterialsusedinlithium-ioncells.Theslopesofthesecurvescontrolthecurrentdistributioninsidetheporouselectrodes,withmoreslopedopen—circuitpotentialfunctionsleadingtomoreuniformcurrentdistributionsandhencebetterutilizationofactivematerial.OptimizationstudieswerecarriedoutfortheBellcoreplasticlithium—ionsystem。

Themodelwasalsousedtopredicttheeffectsofrelaxationtimeonmultiplecharge—dischargecyclesandonpeakpower.

 

Doylemodifiedtheduallithium-ionmodeltoincludefilmresistancesonbothelectrodesandmadedirectcomparisonswithexperimentalcelldatafortheLiC6-LiPF6,ethylenecarbonate/dimethylcarbonate(EC/DMC),KynarFLEX-ILiyMn2O4system.Comparisonsbetweendataandthenumericalsimulationssuggestedthatthereisadditionalresistancepresentinthesystemnotpredictedbypresentmodels。

Thedischargeperformanceofthecellswasdescribedsatisfactorilybyincludingeitherafilmresistanceontheelectrodeparticlesorbycontactresistancesbetweenthecelllayersorcurrent—collectorinterfaces。

OneemphasisofthisworkwasintheuseofthebatterymodelforthedesignandoptimizationofthecellforparticularapplicationsusingsimulatedRagoneplots。

 

Thermalmodelingisveryimportantforlithiumbatteriesbecauseheatproducedduringdischargemaycauseeitherirreversiblesidereactionsormeltingofmetalliclithium,ChenandEvanscarriedoutathermalanalystsoflithiumionbatteriesduringcharge-dischargeandthermalrunawayusinganenergybalanceandasimplifieddescriptionoftheelectrochemicalbehaviorofthesystem。

Theiranalysisofheattransportandtheexistenceofhighlylocalizedheatsourcesduetobatteryabuseindicatedthatlocalizedheatingmayraisethebatterytemperatureveryquicklytothethermalrunawayonsettemperature,abovewhichitmaykeepincreasingrapidlyduetoexothermicsidereactionstriggeredathightemperature。

PalsandNewmandevelopedamodeltopredictthethermalbehavioroflithiummetal-solidpolymerelectrolytecellsandcellstacks.Thismodelcoupledanintegratedenergybalancetoafullcell—sandwichmodeloftheelectrochemicalbehaviorofthecells.Bothofthesemodelsemphasizedtheimportanceofconsiderationsofheatremovalandthermalcontrolinlithiumpolymerbatterysystems.

 

VerbruggeandKochdevelopedamathematicalmodelforlithiumintercalationprocessesassociatedwithacylindricalcarbonmicrofiber.Theycharacterizedandmodeledthelithiumintercalationprocessinsingle-fibercarbonmicroelectrodesincludingtransportprocessesinbothphasesandthekineticsofchargetransferattheinterface.Theprimarypurposeofthemodelwastopredictthepotentialasafunctionoffractionaloccupancyofintercalatedlithium.Theoverchargeprotectionfo

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机硬件及网络

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1