人教版高中生物必修2遗传与进化.docx

上传人:b****5 文档编号:3570427 上传时间:2022-11-24 格式:DOCX 页数:15 大小:97.12KB
下载 相关 举报
人教版高中生物必修2遗传与进化.docx_第1页
第1页 / 共15页
人教版高中生物必修2遗传与进化.docx_第2页
第2页 / 共15页
人教版高中生物必修2遗传与进化.docx_第3页
第3页 / 共15页
人教版高中生物必修2遗传与进化.docx_第4页
第4页 / 共15页
人教版高中生物必修2遗传与进化.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

人教版高中生物必修2遗传与进化.docx

《人教版高中生物必修2遗传与进化.docx》由会员分享,可在线阅读,更多相关《人教版高中生物必修2遗传与进化.docx(15页珍藏版)》请在冰豆网上搜索。

人教版高中生物必修2遗传与进化.docx

人教版高中生物必修2遗传与进化

人教版高中生物必修2《遗传与进化》

第五章基因突变及其它变异

第二节染色体变异教材分析及教学设计

一、教学目标

1.说出染色体结构变异的基本类型。

2.说出染色体数目的变异。

3.进行低温诱导染色体数目变化的实验。

二、教学重点、难点、疑点和教学策略

1.教学重点及教学策略

(1)染色体数目的变异:

染色体组的概念。

(2)二倍体、多倍体和单倍体的概念及其联系。

(3)多倍体育种原理及在育种上的应用。

(4)低温诱导染色体数目变化的实验。

(1)让学生阅读有关染色体组的内容,感知染色体组的概念;以辨图(或用带磁性的雄果蝇染色体组染色体模型)、设问、讨论和复习的方式理解染色体组的概念。

讲清染色体组的概念;用练习的方法巩固染色体组的概念。

染色体组的概念较为复杂,如果直接讲述,学生是很难理解其实质的。

建议教师从雌雄果蝇体细胞和生殖细胞的染色体的形态和数目分析入手,设置一系列的问题情境,通过联系以前所学的知识,帮助学生认识染色体组的概念。

问题情境如下。

观察教科书P86图5-8雌雄果蝇体细胞的染色体和P87图5-9雄果蝇的染色体组,回答下列问题。

(1)果蝇体细胞有几条染色体?

几对常染色体?

(答:

8条;3对。

(2)Ⅱ号和Ⅱ号染色体是什么关系?

Ⅲ号和Ⅳ号染色体是什么关系?

(答:

同源染色体;非同源染色体。

(3)雄果蝇的体细胞中共有哪几对同源染色体?

(答:

Ⅱ和Ⅱ,Ⅲ和Ⅲ,Ⅳ和Ⅳ,X和Y。

(4)果蝇的精子中有哪几条染色体?

这些染色体在形态、大小和功能上有什么特点?

这些染色体之间是什么关系?

它们是否携带着控制生物生长发育的全部遗传信息?

(答:

Ⅱ、Ⅲ、Ⅳ、X或Ⅱ、Ⅲ、Ⅳ、Y;这些染色体在形态、大小和功能上各不相同;它们是非同源染色体;它们携带着控制生物生长发育的全部遗传信息。

(5)如果将果蝇的精子中的染色体看成一组,那么果蝇的体细胞中有几组染色体?

(答:

两组。

通过以上的问题情境,再加上教师的引导和总结,学生能够比较容易理解染色体组的概念,并能很好地理解二倍体和多倍体与染色体组之间的关系。

(2)用举例的方法讲清二倍体、多倍体和单倍体的概念;用区分单倍体与二倍体及多倍体依据的方法辨析二倍体、多倍体和单倍体的概念;用练习的方法巩固二倍体、多倍体和单倍体的概念。

  (3)通过复习植物细胞的有丝分裂过程,染色体数目的变化、分裂后期的特点,自然引出多倍体形成的原因,同时用八倍体小黑麦说明人工诱导多倍体育种的原理和方法。

  2.教学难点及教学策略

  多倍体的形成原因。

  多倍体的形成原因,通过植物细胞的有丝分裂过程。

染色体数目的变化,分裂后期的特点,自然引出多倍体形成的原因。

  3.教学疑点及解决办法

  

(1)区分单倍体与二倍体及多倍体划分的依据。

  

(2)如何理解单倍体可能只有一个染色体组,也可能有多个染色体组。

  

(1)用例证的方法来明确单倍体、二倍体或多倍体的依据。

  

(2)用例证的方法去辨析单倍体可能只有一个染色体组,也可能有多个染色体组。

用具体实例、概念的辨析和对比,认识单倍体、二倍体和多倍体之间的关系。

单倍体的概念是教学中的难点。

教师可以采用教材中提供的蜜蜂的实例来分析蜂王、工蜂和雄蜂体内的染色体组数目,提出单倍体的概念,并设置一些问题情境,让学生区分单倍体与一倍体,单倍体、二倍体和多倍体之间的区别和联系。

例如,教师可以提出下列问题。

(1)一倍体一定是单倍体吗?

单倍体一定是一倍体吗?

(答:

一倍体一定是单倍体;单倍体不一定是一倍体。

(2)二倍体物种所形成的单倍体中,其体细胞中只含有一个染色体组,这种说法对吗?

为什么?

(答:

对,因为在体细胞进行减数分裂形成配子时,同源染色体分开,导致染色体数目减半。

(3)如果是四倍体、六倍体物种形成的单倍体,其体细胞中就含有两个或三个染色体组,我们可以称它为二倍体或三倍体,这种说法对吗?

(答:

不对,尽管其体细胞中含有两个或三个染色体组,但因为是正常的体细胞的配子所形成的物种,因此,只能称为单倍体。

(4)单倍体中可以只有一个染色体组,但也可以有多个染色体组,对吗?

(答:

对,如果本物种是二倍体,则其配子所形成的单倍体中含有一个染色体组;如果本物种是四倍体、六倍体等多倍体,则其配子所形成的单倍体含有两个或两个以上的染色体组。

学生很容易将单倍体与一倍体相混淆。

一倍体只含有一个染色体组,肯定是单倍体,但单倍体不一定只含有一个染色体组,因此,不一定是一倍体。

对于多倍体的配子所形成的单倍体,学生又容易与二倍体、三倍体和四倍体等相混淆。

区分的关键是判断生物体是由受精卵还是由配子发育而成的。

由受精卵发育而成的个体,含有几个染色体组就是几倍体;由配子直接发育而成的生物个体,不管含有几个染色体组,都只能称做单倍体。

染色体变异包括染色体结构的变异和染色体数目的变异,其中染色体数目的变异是本节的教学重点。

建议本节的教学时间为2课时,第1课时完成理论教学部分,第2课时完成低温诱导植物染色体数目变化的实验。

在复习基因突变的基础上,教师可以引导学生回忆基因和染色体的关系。

基因能够发生突变,那么染色体能不能发生变化呢?

如果染色体发生变化,它会发生什么样的变化呢?

生物的性状又会发生什么样的变化呢?

从而引出染色体变异包括染色体结构的变异和染色体数目的变异。

染色体结构的变异是学生了解的内容,教材通过4个示意图直观形象地说明了染色体结构变异的类型。

但需要提醒学生的是,尽管大多数染色体结构的变异对生物是有害的,但也有少数变异是有利的,人们研究染色体结构的变异可以为生产实践服务,也可以为人类健康服务。

关于染色体数目的变异可以采取下面的教学策略。

3.用图解、事例和图表的形式引导学生学习多倍体和单倍体育种。

之所以将多倍体和单倍体育种放在一起来学习,是因为二倍体、多倍体和单倍体具有可比性,有助于学生对概念的理解。

同时,育种的学习是建立在这些概念的基础之上的。

多倍体育种可以用下列的流程图表示。

单倍体育种的教学可采用实例分析并结合流程图的方法。

例如,假设体细胞的基因型为AaBb,育种过程中基因型的变化如下图所示。

最后列表让学生总结两种育种方法的原理、操作方法和优缺点,表中的内容由学生讨论填写。

多倍体育种

单倍体育种

原理

染色体组成倍增加

染色体组成倍减少,再加倍后得到纯种(指每对染色体上成对的基因都是纯合的)

常用

方法

秋水仙素处理萌发的种子、幼苗

花药的离体培养后,人工诱导染色体加倍

优点

器官大,提高产量和营养成分

明显缩短育种年限

缺点

适用于植物,在动物方面难以开展

技术复杂一些,须与杂交育种配合

4.关于“低温诱导植物染色体数目的变化”的实验。

教师在实验开始前,可以先复习染色体组、二倍体、多倍体和单倍体的概念,以及多倍体和单倍体育种的原理、操作方法和优点。

同时复习“观察植物细胞的有丝分裂”的实验步骤,为本实验打好基础。

在低温诱导染色体数目的变化的实验中,低温的作用与秋水仙素的作用基本相似。

与秋水仙素相比,低温条件容易创造和控制,成本低、对人体无害、易于操作。

但通过显微镜观察时,只能观察到染色体数目的增加,增加的具体数目不容易确定。

三、课时安排、教学方法

  2课时。

讲授法和谈话法。

四、教学步骤

第一课时

(一)明确目标

  出示本节课要达到的教学目标。

  1.染色体结构变异的4种类型。

  2.染色体组,二倍体的概念。

(二)重点、难点的学习与目标完成过程

  引言:

通过细胞有丝分裂、减数分裂以及受精作用的学习,我们知道每种生物的染色体数目及染色体形态是稳定的。

从而保持了遗传性状的相对稳定性。

然而一切事物都是变化的,染色体也不例外,当自然条件和人为条件发生改变时,染色体的结构或染色体的数目可以发生改变,从而引起生物性状发生改变。

今天,我们来学习这方面的内容。

二、染色体变异

  1.染色体变异的概念

  问:

什么是染色体变异?

  要求学生答出:

在自然条件和人为条件改变的情况下,染色体结构的改变和染色体数目的增减导致生物性状的变异。

  教师叙述,根据染色体结构和数目的变化,染色体变异可分为染色体结构变异和染色体数目变异两类。

  2.染色体结构的变异

  问:

“猫叫综合征”是怎样引起的?

它属于哪种染色体变异?

  让学生看书第52反后回答。

  是人的第5号染色体部分缺失引起的遗传病,属染色体结构变异。

  问:

染色体结构变异有哪4种类型?

  教师出示染色体结构变异4种类型图解,再一进行解说归纳。

  缺失:

指一条染色体断裂而失去一个片段,这个片段上的基因也随之丢失。

如果失去的基因是显性的,同源染色体上保留下来的是隐性的,这一本来不能显出的隐性性状就能显出来。

  重复:

一条染色体的断裂片段接到同源染色体的相应部位,结果后者就有一段重复基因。

  倒位:

一条染色体的断裂片段,位置倒过来后再接上去,造成这段染色体上的基因位置颠倒。

  易位:

染色体发生断裂,断裂片段接到非同源染色体上的现象。

易位可使原来不连锁的基因发生连锁。

  要注意到,染色体结构的改变,严重的可以造成死亡。

比如当两个同源染色体相同部分都缺失时,某些基因就都不存在,这就可以造成死亡。

  除了染色体结构变异外,染色体数目的改变对生物新类型的产生起着很大的作用,我们一起来探讨这一问题。

  3.染色体数目变异

  

(1)染色体组

  出示果蝇的染色体图,学生阅读教材。

  问:

果蝇体细胞有几个染色体?

几对同源染色体?

其中几对常染色体和性染色体?

  学生回答:

(略)

  问:

雄果蝇产生精子时必须进行减数分裂,精子里有哪几条染色体?

几种精子?

  学生回答后,教师用雄果蝇染色体组模型演示。

  问:

两种精子中染色体数相等吗?

分别是多少个?

各是什么?

  学生答出,相等,分别是4个,应为:

  Ⅱ、Ⅲ、Ⅳ和X及Ⅱ、Ⅲ、Ⅳ和Y。

  又问:

对一个精子而言,染色体形态大小相同吗?

为什么?

  学生回答:

不同,因为经同源染色体分离,二种精子里都不含同源染色体。

  教师归纳:

像果蝇这样,二倍体生物配子里的一组非同源染色体,它们在形态和功能上各不相同,但携带着控制一种生物生长发育、遗传和变异的全部信息,这样的一组染色体,叫做一个染色体组。

  

(2)二倍体

  由受精卵发育而成的个体,体细胞中含有两个染色体组的叫做二倍体。

如人、果蝇、玉米是二倍体,几乎全部动物和过半数的高等植物都是二倍体。

  (三)总结

  染色体变异分染色体结构变异和染色体数目变异。

前者主要有缺失、重复、倒位和易位4种类型;后者分为两类:

一类是细胞内个别染色体的增加或减少,另一类是细胞中的染色体成倍地增加或减少。

  像果蝇的生殖细胞那样,该细胞中的一组非同源染色体,它们在形态、大小和功能上各不相同的一组染色体叫染色体组。

凡是由受精卵发育而成的生物个体,体细胞中含有两个染色体组的个体叫二倍体。

  (四)布置作业

  1.认真分析下图的对照图,从A、B、C、D确认出表示含一个染色体组的细胞,是图中的(     )

  答案:

B

  2.教材P89基础题目。

(五)板书设计

(二)染色体变异

  1.染色体变异的概念

  2.染色体结构的变异

  4种类型:

缺失 重复 倒位 易位

  3.染色体数目变异

  

(1)染色体组

  

(2)二倍体

第二课时

  (-)明确目标

  出示本节课要达到的教学目标。

1.多倍体的概念、单倍体的概念

2.单倍体和多倍体的特点、形成原因及其在育种上的意义。

  3.人工诱导多倍体在育种上的应用及成就。

  

(二)重点、难点的学习与目标完成过程

  复习提问:

  问:

染色体结构的变异有哪4种类型?

什么叫染色体组?

什么叫二倍体?

  学生回答:

(略)

  (3)多倍体的概念及其形成的原因

  学习了二倍体的概念后,我们知道,由受精卵发育而来的个体,体细胞中含有3个或3个以上染色体组的叫做多倍体。

其中体细胞中含有3个染色体组的叫做三倍体,如香蕉就是三倍体;体细胞中含有4个染色体组的叫做四倍体,如马铃薯就是四倍体。

此外还有六倍体、八倍体等统称为多倍体。

所以,体细胞中所含的染色体组数目是划分二倍体或者多倍体的依据。

这些都是染色体数目变异中染色体成倍地增加或减少的一类情况。

  多倍体产生的原因呢?

教师出示植物细胞有丝分裂过程图,并提问:

植物细胞有丝分裂的各个时期染色体数目有什么变化?

分裂后期有什么特点?

这一阶段所含染色体数目和其他时期是否相同。

  学生回答完上述问题后,教师归纳:

植物细胞进行有丝分裂过程中,染色体经复制后已经分裂,由于外界环境条件(如温度骤变)或生物内部因素的干扰,纺锤体的形成受到破坏,以致染色体不能被拉向两极,细胞也不能分裂成2个子细胞,于是就形成了染色体数目加倍的细胞。

这种染色体加倍的细胞,继续进行正常的有丝分裂,并且通过减数分裂,形成了染色体数目也相应加倍的生殖细胞,再由这些生殖细胞结合成合子,进一步发育成的植物,就是多倍体。

例如帕米尔高原的高山植物,有65%的种类是多倍体。

  4.人工诱导多倍体在育种上的应用

  

(1)多倍体植株的特点

  由于染色体数目的增多,多倍体植株一般表现为茎杆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。

  

(2)方法和原理

  问:

人工诱导多倍体的方法是什么?

用秋水仙素处理能够获得多倍体的原理是什么?

  让学生阅读教材第54页后回答,老师归纳。

然后教师以异源八倍体小黑麦培育过程说明上述方法和原理。

出示异源八倍体小黑麦培育过程图解。

  教师指着图解说明:

普通小麦是异源六倍体(AABBDD),其雌配子中有三个染色体组(ABD),共21个染色体;以黑麦(RR)作父本,雄配子中有一个染色体组(R),7个染色体。

杂交后子代含四个染色体组(ABDR),由于是异源的,联会紊乱,是高度不育的。

若用一定浓度的秋水仙素处理子代幼苗即可加倍为异源八倍体(AABBDDRR),就能形成正常的雌雄配子,且都能受精、结实、繁殖后代,如图。

(见下页。

  小黑麦的创造,是中国农业科学院鲍文奎教授创造的新作物,它产量高,经试验比当地小麦增产30%以上,比黑麦增产40%以上;蛋白质含量高;抗逆性强,耐瘠薄土壤,耐寒冷气候。

目前小黑麦已在贵州、甘肃等高原地区引种试种成功,推广面积约100万亩以上。

  5.单倍体

  

(1)单倍体的概念

  指体细胞中含有本物种配子的染色体数目的个体。

教师着重讲清“体细胞”、“本物种”、“配子”3个生物用词的含意,并举例说明。

如玉米是二倍体,它的体细胞中含有二个染色体组,20个染色体,它的单倍体植株体细胞中含有1个染色体组,10个染色体。

又如普通小麦是六倍体,它的体细胞中含有六个染色体组,42条染色体,它的单倍体植株体细胞中含有3个染色体组,21条染色体。

  问:

单倍体、二倍体和多倍体的划分根据是什么?

  学生回答。

教师强调,虽然二倍体和多倍体的划分依据是由合子发育而来的个体,其体细胞中含有的染色体组的数目是几就是几倍体。

但是单倍体的确定并不是以体细胞中含有染色体数目为依据的,而应是体细胞含有本物种配子的染色体数目。

由配子直接发育而来的不同生物单倍体含有染色体组的数目可以不同,绝不能认为单倍体只含有一个染色体组,也可能有多个染色体组。

如玉米的单倍体只含一个染色体,棉花的单倍体含有二个染色体组。

  

(2)单倍体植株的特点

  与正常植株相比,单倍体植株长得弱小,而且是高度不育的。

  (3)单倍体在育种上的意义

  学生回答后,老师强调,育种工作者常常采用花药离体培养的方法来获得单倍体植株,这种植株无生产价值,但在育种上有特殊的意义。

用人工诱导使单倍体植株染色体加倍,重新恢复到正常植株的染色体数目,且每对染色体上的基因都是纯合的,自交产生的后代不会发生性状分离。

这种方法比杂交育种所需时间大大缩短,一般只需两年时间,就可以得到一个稳定的纯系品种。

  现举例如下:

两对基因YyRr的杂合豌豆,要想获得Yyrr品种,如何运用单倍方法培育?

  此种方法培养稳定的性状,第二年种植下去的,就是所需的纯品种了,不会发生性状分离,和杂交育种相比,明显缩短了育种年限。

  (三)总结、扩展

  多倍体划分的依据是体细胞中含有3个或3个以上染色体组;单倍体的确定不是以体细胞中含有染色组数目为依据,而是指体细胞中是否含有本物种配子的染色体数目的个体。

由配子直接发育而来的不同生物单倍体含有染色体组的数目可以不同,绝不能认为单倍体只含有一个染色体组,它也可能有多个染色体组。

  我们已经学习过了杂交育种、人工诱变育种、人工诱导多倍体育种和单倍体育种等几种遗传育种的方法,现将它们的原理和方法列表比较如下(可用银幕显示):

种类

原理

方法

单倍体育种

染色体变异

花粉离体培养后再人工加倍

人工诱导多倍体育种

染色体变异

用秋水仙素处理萌发的种子或幼苗

人工诱导变育种

基因突变

用一定剂量范围内的各种射线或激光处理,也可用化学药剂处理

杂交育种

基因重组

杂交实验法

  (四)布置作业

  1.用亲本基因型为DD和dd的植株进行杂交,其子一代的幼苗用秋水仙素处理产生了多倍体,该多倍体的基因型是(      )

  A.DDDd          B.DDDD          C.DDdd           D.dddd

  2.用基因型为AaBb的个体产生的花粉粒,分别离体培养成幼苗,再用秋水仙素处理使其成为二倍体,这些幼苗成熟的后代(      )

  A.全部杂种        B.全部纯种        C.1/16纯种        D.4/16纯种

3.教材P89拓展题。

 

(五)板书设计

(3)多倍体的概念及其形成的原因

  4.人工诱导多倍体在育种上的应用

  

(1)多倍体植株的特点

  

(2)方法和原理

  5.单倍体

  

(1)单倍体的概念

  

(2)单倍体植株的特点

  (3)单倍体在育种上的意义

五、教材问题的答案和提示

(一)P85问题探讨

提示:

参见练习中的拓展题,了解无子西瓜的形成过程。

(二)P88实验

两者都是通过抑制分裂细胞内纺锤体的形成,使染色体不能移向细胞两极,而引起细胞内染色体数目加倍。

(三)P89教材练习

基础题

1.

(1)×;

(2)×。

2.B。

3.填表

体细胞

中的染

色体数

配子

中的染

色体数

体细胞

中的染

色体组数

配子中

的染色

体组数

属于几

倍体生物

豌豆

14

7

2

1

二倍体

普通小麦

42

21

6

3

六倍体

小黑麦

56

28

8

4

八倍体

拓展题

1.西瓜幼苗的芽尖是有丝分裂旺盛的地方,用秋水仙素处理有利于抑制细胞有丝分裂时形成纺锤体,从而形成四倍体西瓜植株。

2.杂交可以获得三倍体植株。

多倍体产生的途径为:

秋水仙素处理萌发的种子或幼苗。

3.三倍体植株不能进行正常的减数分裂形成生殖细胞,因此,不能形成种子。

但并不是绝对一颗种子都没有,其原因是在进行减数分裂时,有可能形成正常的卵细胞。

4.有其他的方法可以替代。

方法一,进行无性繁殖。

将三倍体西瓜植株进行组织培养获取大量的组培苗,再进行移栽。

方法二,利用生长素或生长素类似物处理二倍体未受粉的雌蕊,以促进子房发育成无种子的果实,在此过程中要进行套袋处理,以避免受粉。

六、教学参考资料

1.染色体结构的变异及其类型

染色体结构变异包括缺失、重复、倒位和易位四种类型,染色体结构变异最早是在果蝇中发现的。

遗传学家在1917年发现染色体缺失,1919年发现染色体重复,1923年发现染色体易位,1926年发现染色体倒位。

人们在果蝇幼虫唾腺染色体上,对各种染色体结构变异进行了详细的遗传学研究。

染色体结构变异的发生是内因和外因共同作用的结果。

外因有各种射线、化学药剂、温度的剧变等,内因有生物体内代谢过程的失调、衰老等。

在这些因素的作用下,染色体可能发生断裂,断裂端具有愈合与重接的能力。

当染色体在不同区段发生断裂后,在同一条染色体内或不同的染色体之间以不同的方式重接时,就会导致各种结构变异的出现。

下面分别介绍这几种结构变异的情况。

(1)缺失

缺失是指染色体上某一区段及其带有的基因一起丢失,从而引起变异的现象。

如果缺失的区段发生在染色体两臂的内部,称为中间缺失。

如果缺失的区段在染色体的一端,则称为顶端缺失。

在缺失杂合子中,由于缺失的染色体不能和它的正常同源染色体完全相应地配对,所以当同源染色体联会时,可以看到正常的一条染色体多出了一段(顶端缺失),或者形成一个拱形的结构(中间缺失),这条正常的染色体上多出的一段或者一个结,正是染色体上相应失去的部分。

缺失引起的遗传效应随着缺失片段大小和细胞所处发育时期的不同而不同。

在发育中,缺失发生得越早,影响越大;缺失的片段大,对个体的影响也越严重,重则引起个体死亡,轻则影响个体的生活力。

在人类遗传中,染色体缺失会引起较严重的遗传性疾病,如猫叫综合征等。

(2)重复

染色体上增加了相同的某个区段而变异的现象,叫做重复。

在杂合子中,当同源染色体联会时,发生重复的染色体的重复区段形成一个拱形结构,或者比正常染色体多出一段。

重复引起遗传效应比缺失的小。

但是如果重复的部分太大,会影响个体的生活力,甚至引起个体死亡。

例如,果蝇由正常的卵圆形眼变为棒状眼的变异,就是X染色体上某一区段重复的结果。

重复对生物的进化有重要作用。

这是因为“多余”基因可以向多个方向突变而不至于损害细胞和个体的正常机能。

突变的最终结果,有可能使重复基因变成能执行新功能的新基因,从而为生物适应新环境提供机会。

因此,在遗传学上往往把重复看做是新基因的一个重要来源。

(3)倒位

染色体在两个点发生断裂后,产生三个片段,中间的区段发生180°的倒转,与另外两个区段重新接合而引起变异的现象,叫做倒位。

倒位杂合子形成的配子大多是异常的,从而影响了个体的育性。

倒位纯合子通常也不能和原种个体间进行有性生殖,不过,这样形成的生殖隔离,往往为新物种的进化提供了有利条件。

例如,普通果蝇(D.melanogaster)的第3号染色体上有三个基因,它们通常按猩红眼—桃色眼—三角翅脉的顺序排列(St-P-Dl);同是这三个基因,在另一种果蝇中的顺序是St-Dl-P,这也是两个物种之间差别的主要根源。

(4)易位

易位是指一条染色体的某一片段移到另一条非同源染色体上,从而引起变异的现象。

如果两条非同源染色体之间相互交换片段,叫做相互易位,这种易位比较常见。

相互易位的遗传效应主要是产生部分异常的配子,使配子的育性降低或产生有遗传病的后代。

例如,人慢性粒细胞白血病,就是由第22号染色体的一部分易位到第14号染色体上造成的。

易位在生物进化中具有重要作用。

例如,在17个科29个属的种子植物中,都有易位产生的变异类型,其中,直果曼陀罗的近100个变种,就是不同染色体易位的结果。

2.同源多倍体和异源多倍体

(1)同源多倍体

同一物种经过染色体加倍形成的多倍体,称为同源多倍体。

同源多倍体在植物界是比较常见的。

由于大多数植物是雌雄同株的,两性配子有可能同时发生减数分裂异常,结果使配子中染色体数目不减半,然后通过自交形成多倍体。

多倍体在动物中比较少见,这是因为动物大多数是雌雄异体,染色体稍微不平衡,就容易引起不育,甚至使个体不能生存,所以多倍体动物个体通常只能依靠无性生殖来传代。

例如,有一种甲壳动物,它的二倍体个体进行有性生殖,而四倍体个体则进行无性生殖。

此外,在蝾螈、蛙以及家蚕等动物中,也发现过三倍体

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小升初

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1