Latin American applied research.docx

上传人:b****5 文档编号:3548244 上传时间:2022-11-23 格式:DOCX 页数:12 大小:198.90KB
下载 相关 举报
Latin American applied research.docx_第1页
第1页 / 共12页
Latin American applied research.docx_第2页
第2页 / 共12页
Latin American applied research.docx_第3页
第3页 / 共12页
Latin American applied research.docx_第4页
第4页 / 共12页
Latin American applied research.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

Latin American applied research.docx

《Latin American applied research.docx》由会员分享,可在线阅读,更多相关《Latin American applied research.docx(12页珍藏版)》请在冰豆网上搜索。

Latin American applied research.docx

LatinAmericanappliedresearch

窗体顶端

窗体底端

窗体顶端

CitadoporSciELO

CitadoporGoogle

SimilaresenSciELO

SimilaresenGoogle

LatinAmericanappliedresearch

versión ISSN0327-0793

Lat.Am.appl.res. v.34 n.4 BahíaBlanca oct./dic. 2004

 

Controlofpusherfurnacesforsteelslabreheatingusinganumericalmodel

P.Marino1,A.Pignotti2andD.Solis3

CentrodeInvestigaciónIndustrial,FUDETEC,2804Campana,Argentina

1sidmrp@

2api@

3sidpsol@

Abstract−Steelslabsarereheatedinpusher-typefurnacesuptoatemperatureof1200oCinthesteelsheetmanufacturingprocess.Inthisarticlewedescribeacontrolsystemthatusesanon-linenumericalmodeltocalculatethefurnacesetpointsinordertoimprovetheheatingquality.Examplesofactualfurnaceoperationwithandwithoutthesystemarepresentedtoshowtheimprovementsthatareobtainedhandlingtypicalnon-stationarysituations.

Keywords−SteelIndustry.ReheatingFurnaces.FurnaceControl.

I.INTRODUCTION

Inthesteelstripmanufacturingprocess(Figure1),steelslabsobtainedfromcontinuouscastingarereheateduptotemperaturesofapproximately1200oCpriortotherollingprocess.Therequiredtemperatureattheendofsuchprocesshastobecomprehendedwithinanarrowrangedeterminedbythesubsequenton-lineheattreatmentprocess.Slabreheatinginpusherfurnacesisoneofthesourcesofvariabilitythatproducedeparturesfromthatnarrowrange.

InthecaseofSIDERAR'shotrollingfacilityinSanNicolás,Argentina,fourpusher-typefurnacesareusedtoreheatslabsthatareapproximately6mlong,between0.65and1.53mwide,andfrom0.18to0.20mthick.Thesefurnacesarenamedafterthewaytheslabsarepushedforwardinsidethefurnace.Everytimeahotslabhastobedischargedtoberolledanewslabisintroducedintothefurnaceandtheintermediateslabsarepushedsidewaystowardsthefurnaceoutlet.Inthefirstpartofthefurnacetheslabsaresupportedbyfourrefrigeratedskids,whileneartheoutlettheylieonarefractoryhearththatisintendedtodiminishthetemperatureinhomogeneitygeneratedbytheskidsTheheatingpowerissuppliedbygasburnersthatuseeithernaturalgasoramixtureofnaturalandcokegasesandarearrangedinseveralzones.Typicallyonepreheatingzone,twoheatingzones(anupperandalowerone)andonesoakingzonearepresent(Figure2).Theburnersofeachzonearecontrolledthroughthermocouplesetpoints:

acontrolloopregulatestheairandgasflowratestomatchthesetvaluewiththetemperaturemeasuredbyaproperlyplacedzonethermocouple.Therefore,theproblemoffurnacetemperaturecontrolisthatofspecifyingthesetpointsthatproduceanadequateslaboutlettemperaturedistribution.

Tomonitortheslaboutlettemperaturethereisaninfraredpyrometerattherougherexit(R4inFigure1),whichmeasurestheslablongitudinaltemperatureprofileontheuppersideoftheslab.Themeantemperatureandthemaximumtemperaturedifferenceofthisprofilearethetargetvariablesofthefurnacecontrolanddefinetheheatingquality.Althoughitwouldbedesirabletohaveameasurementpointclosertothefurnaceoutlet,theoxidelayerthatisformedduringtheheatingprocessandthatisremovedbyadescalerattherougherinlet,preventsareliablemeasurementpriortotherougherexit.

Figure1.Schematicillustrationofthesteelstripmanufacturingprocess

Traditionallythefurnacesareoperatedmanually,basedonsetpointtablesthatcorrespondtosteadystateoperation.TherearealsosomeautomaticactionsthatareimplementedintheProgrammableLogicController(PLC)thatisusedtohandlethesignalsfromtheprocesssensorsandtoregulatetheprocessactuators.Althoughmanualoperationgivesareasonableheatingqualitywhenthefurnaceisinsteadystate,thereusuallyarechangesintheslabgeometry,inthecycletime,intheinlettemperature,andtherearedownstreameventsthatproducehaltsintheline.Allthesesituationsproducedeparturesfromstationaryoperationandgeneratevariationsintheslabmeantemperatureattherougheroutlet.Forinstance,toavoidslaboverheatinginmanualoperation,wheneverahaltoccurs,thegasandairflowratesareautomaticallydecreasedbythePLC.Whenoperationisresumed,compensatingforthiseffectisadelicatetaskthatonlyexperiencedoperatorsareabletocarryoutwithrelativesuccess.

Inthisarticlewedescribeacontrolsystembasedonanumericalmodeloftheprocessthatisusedtoautomaticallycalculatezonetemperaturesetpointsthatareintendedtominimizethedeparturesoftheslabmeantemperatureattherougherexitfromthecorrespondingprocessobjectives.

II.NUMERICALMODELS

Theuseofnumericalmodelstoimprovethedesignofthisprocesshasbeentheobjectiveofseveralanalyses.Averycompletesteadystatemodelwaspresentedin(Barr,1995).Thatmodelwasusedtostudytheinfluenceoftheskidconfigurationontheslabhomogeneity.

Duetothefactthatthemodelsareusedinafactoryenvironment,theuseofstandardPChardwareismandatory,thusrestrictingthemodelcomplexity.However,thecontinuousincreaseinthecomputingpowerhasrecentlyallowedthedevelopmentofdetailednumericalmodelscapableofperformon-line.

(Correiaetal.,2002)investigateparametricallytheuseof2-Dzonemodelstopredictthethermalbehaviorofacontinuouslyoperatedmetalreheatingfurnace.In(Boineauetal.,2002)aCFDcodewithamoduletocalculatetheradiativeexchangesusingazoneformulationwasadaptedtosimulatetransientseliminatingthefluiddynamiccalculation.Althoughaseriesofoff-lineanalyseswaspresented,on-lineresultswerenotgiven.Alsoin(Honneretal.,2002),aCFDmodelwasusedtocalibrateasimpleronewhichusesadjustablecoefficientstoevaluatetheradiativeandconvectiveheatfluxes.On-lineresultsshowedagoodagreementbetweencalculatedandmeasuredvalues.

Inapreviouspaper(Marinoetal.,2002)wepresentedadetailednumericalmodeloftheslabreheatinginpusher-typefurnacesandshowedthatthetemperaturescalculatedbythemodelareinagreementwithvalidationmeasurementsmadewithinstrumentedslabs.ModelresultswerealsosuccessfullycomparedwiththepyrometermeasurementsatR4.Themainmodelfeaturesare:

∙3-dimensionalandspectralcalculationoftheradiativeexchangesinthecombustionchamberusingthezonemethod(HottelandSarofim,1967)

∙DetaileddescriptionoftheradiativepropertiesofthecombustionproductsfromRADCAL(Grosshandler,1993)

∙Thecombustionproducttemperaturesarecalculatedfromthermocouplemeasurements

∙2-dimensionalcalculationoftheslabtemperaturedistribution(neglectinginhomogeneitiesintheslabwidth)

Similarfeaturesarepresentinmodelsdevelopedfordifferentkindoffurnaces(MarinoandPignotti,1997;Altschuleretal.,2000;Marino,2000).

III.FURNACECONTROL

Inthissectionwedescribethealgorithmthatisusedalongwiththemodeltoautomaticallycalculatethezonetemperaturesetpointsthatareintendedtominimizethedeparturesofthemeanslabtemperaturefromthetargetvalue.Thisalgorithmincludestheevaluationoftheeffectofchangesinthezonetemperaturesontheslabfuturethermalevolution.Duetothefactthatboththemodelandthecontrolalgorithmhavetoperforminrealtime,andthatthiscalculationhastobeupdatedfrequentlyinordertotakeintoaccountpossiblechangesintheloadgeometry,cycletime,thermocouplemeasurements,etc.,thereareboundsonthecomplexityofthealgorithmusedtocalculatethetemperaturesetpoints.Thecurrentpracticeistoperformthiscalculationevery30seconds.

A.ControlAlgorithm

Inthecontrolalgorithmatargetaverageslabtemperatureattherougherexitisdefinedforeveryslabinthefurnace,accordingtotheproductandprocessrequirements.Itdependsontheslabgeometryandthestripfinalthickness.Intermediatetargettemperaturesattheendofthepreheatingandheatingzonesarealsodefined.

Figure2.LongitudinalsectionofSIDERAR#3pusherfurnace

Foreachzonetheupdatedsetpointtemperatureisdeterminedbycomparingthetargettemperatureattheendofthezone,andthemodelpredictedaverageslabtemperaturewhenitreachestheendofthezone.Inpractice,thefollowingequationissolved:

=0

where

Wi:

isaweighingfactorthatdependsontheslabdistancetotheendofthezoneandonthedepartureofthecurrentslabtemperaturefromitsdesiredstationaryvalue

Tci:

isthecalculatedmeantemperaturethattheslabiwillhaveattheendofthezoneundertheassumptionthattheslabvelocityremainsconstant.Thisvalueisafunctionoftheupdatedzonesetpointtemperature

Tobji:

isthetargettemperatureofslabiattheendofthezone

Thesummationcomprisesalltheslabsofthezoneandalsopartofthosethatareintheprecedingzone.Boththeobtainedzonetemperaturesandtheirratesofchangearelimitedinordertopreservetheintegrityoftherefractories.

B.TargetOffset

Asthemodelcalculatesthemeanslabtemperatureatthefurnaceoutlet,buttheheatingprocessreferencetemperatureismeasuredwithapyrometerontheslabuppersurfaceaftertherougherstand,thereisadropinthemeanslabtemperaturebetweenthefurnaceandtherougherexit.Thisdropmayvarydependingonthetransferencetime,theperformanceofthedescaler,andtherefrigerationoftherollingcylinders.Thus,acorrectionterm(offset)isintroducedforthetargettemperatureatthefurnaceoutlet.Thistermisintendednotonlytocompensatefordeparturesfromaconstanttemperaturedropfromthefurnaceout

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1