采区供电设计采区高压电缆的选择.docx

上传人:b****3 文档编号:3517650 上传时间:2022-11-23 格式:DOCX 页数:50 大小:44.26KB
下载 相关 举报
采区供电设计采区高压电缆的选择.docx_第1页
第1页 / 共50页
采区供电设计采区高压电缆的选择.docx_第2页
第2页 / 共50页
采区供电设计采区高压电缆的选择.docx_第3页
第3页 / 共50页
采区供电设计采区高压电缆的选择.docx_第4页
第4页 / 共50页
采区供电设计采区高压电缆的选择.docx_第5页
第5页 / 共50页
点击查看更多>>
下载资源
资源描述

采区供电设计采区高压电缆的选择.docx

《采区供电设计采区高压电缆的选择.docx》由会员分享,可在线阅读,更多相关《采区供电设计采区高压电缆的选择.docx(50页珍藏版)》请在冰豆网上搜索。

采区供电设计采区高压电缆的选择.docx

采区供电设计采区高压电缆的选择

采区供电设计之采区高压电缆的选择

采区高压电缆的选择相对下井主电缆的选择来讲更加简单,主要从三个方面来选择。

1、按持续允许电流来选择电缆截面

             KIp≥Ia

式中:

Ip 空气温度为25℃时,电缆允许截流量,安;对不同绝缘的高压电缆可查表12-2-5~12-2-7;12-2-21(交联电缆)

      K 温度校正系数;可查表12-2-25;电缆线芯最高允许工作温度65℃,周围环境温度25℃,故可K取1。

     Ia 通过电缆的最大持续工作电流,安。

2、按电缆首端在系统最大运行方式时发生三相短路,应满足热稳定的要求。

⑴热稳定系数法。

此方法较简单,一般在纸绝缘电缆的热稳定计算中采用此法。

(目前不用)

        Amin≥IK(3)(tj)1/2/C

式中:

Amin 电缆短路时热稳定要求的最小截面,mm2;

         IK(3)  三相最大稳态短路电流,安;

     tj 短路电流作用的假想时间,秒;井下中央变馈出线整定时间一般取瞬动,故tj值为0.25秒。

     C热稳定系数,查表10-3-3。

⑵按电缆的允许短路电流法。

此法较复杂,主要用于交联聚乙烯电缆的热稳定计算。

①允许短路电流计算

       ISC={CC/(r20at)*ln{[1+α(θSC-20)]/[1+α(θ0-20)]}}1/2

式中:

ISC 允许短路电流,安;

     θSC 电缆允许短路温度,℃;交联电缆为230℃;油浸纸绝缘电缆为220℃。

     θ0  短路前电缆温度;℃;可取65℃

      r20   20℃时每厘米电缆导线的交流电阻,Ω/cm;

     α  导体电阻的温度系数,20℃时:

铜:

0.00393 1/℃;铝:

0.00403 1/℃;都近似于0.004;

     CC   每厘米电缆导线的电容,焦耳/厘米3·℃;铜:

3.5;铝:

2.48;

     t  短路时间,秒;为保护整定时间和开关动作时间之和。

取0.5秒或0.75秒。

②导线交流电阻计算

每厘米导线交流电阻r按下式计算:

     r=r′(1+YS+YP)

式中:

r 每厘米电缆导线交流电阻,Ω/cm;

     r′每厘米电缆导线直流电阻,Ω/cm;

     YS 集肤效应系数;

     YP 邻近效应系数。

③集肤效应和邻近效应系数计算

见第十二章 5-12-59页12-2-3和12-2-4两式。

④导线直流电阻计算

每厘米电缆导线直流电阻r′按下式计算

     r′=ρ20/A[1+α(θ-20)]K1K2K3

式中:

ρ20 导线材料在20℃下的电阻系数;铜芯:

1.84×10-6Ω·cm2/cm;铝芯:

3.10×10-6 Ω·cm2/cm;

    A  导线截面积,cm2

       α 20℃时的电阻温度系数;

    θ 电缆导线温度,℃;6KV取65℃,10KV取60℃;

    K1  扭绞系数,一般取:

1.012

K2   成缆系数,一般取:

1.007

K3   紧压效应系数,一般取:

1.01

⑶按正常负荷校验电压损失

△  U%=1000/10·UN2·P·L(R0+X0tanφ)=K·P·L

式中:

K 每兆瓦公里负荷矩电缆中电压损失的百分数,6KV时,K=2.78(R0+X0tanφ);10KV时,K=1·(R0+X0tanφ)。

        在不同功率因数及不同电缆截面时的数据可查表10-3-6及10-3-7

    UN  额定电压,KV;

截面(mm2)

16

25

35

50

70

95

120

R0

1.287

0.824

0.588

0.412

0.294

0.217

0.192

X0

0.094

0.085

0.078

0.075

0.072

0.069

0.068

    P  电缆输送的有功功率,兆瓦;

    L  电缆线路长度,公里;

    R0、X0  电缆单位长度的电阻及电抗,Ω/km。

不同截面电缆数据不一样。

(可查参考文献3附录二表2-2)

高压系统正常电压损失不超过7%,故障状态下不得超过10%

设计时按7%校验。

电压损失应从地面变电所算起至采区变电所母线止,而不是从中央变起至采变。

采区供电设计之采区低压电缆的选择

电缆的选择包括确定电缆的型号、长度、芯线数目及主芯线截面大小。

其中以确定主芯线截面大小的计算较为复杂。

一、电缆选择的一般原则

1、由于采区低压供电电压一般采用380/660V供电,优先采用660V供电,所以所选电缆电压主等级应大等于660V。

2、固定或半固定敷设的动力电缆,通常采用铠装电缆或不燃性橡胶电缆。

3、移动式或手持式电气设备都应使用专用的不燃性橡胶电缆。

4、固定敷设的照明,通讯、信号和控制用的电缆应用铠装电缆、塑料电缆或橡胶电缆,非固定敷设的,应用橡胶电缆。

5、低压电缆严禁采用铝芯。

6、电缆长度的确定

⑴对于铠装电缆,其长度为巷道实际长度的1.05倍;对于橡套电缆;其长度为巷道实际长度的1.1倍。

⑵为了便于安装,当电缆中间有接头时,应在电缆两端处各增加3米。

⑶在确定电缆长度时,应以用电设备可能处于最远的地方来计算。

7、电缆芯线数目的确定

⑴动力用橡套电缆一般选用四芯。

⑵信号电缆的芯数要根据控制、信号、通讯的需要来确定,并留有备用线芯,约为需用芯数的20%左右。

8、电缆截面选择原则

⑴按电缆长时允许负荷电流的方法来选择,也叫安全载流量。

⑵按正常工作时的电压损失不超过允许范围。

应保证电动机正常工作的端电压不低于0.9U0。

⑶按电动机起动时端电压不低于额定电压的75%校验,或不会使磁力起动器无法合闸。

⑷对橡套电缆,还要考虑不小于电缆机械强度要求的最小截面。

橡套电缆按机械强度要求的最小截面

用电设备名称

满足机械强度要求的最小截面(mm2)

各种采煤机组

35~95

可弯曲刮板运输机

16~35

小容量刮板运输机

10~25

回柱绞车、电动装岩机

16~25

局扇、电钻

4

照明支线

1.5~2.5

调度绞车、照明干线

4~6

⑸考虑到低压电缆短路的热稳定,即不因过热而损坏,故要求不小于保护装置要求的最小截面。

可查“第十三章 井下过流保护 5-13-47”中的表13-2-9。

二、电缆截面选择计算步骤

1、按长时允许负荷电流选择电缆截面

            KIcc≥Ig

式中;Icc 电缆允许安全截流量,安

     K  环境温度校正系数,环境温度按25℃,取1;

     Ig  用电设备持续工作电流,安。

干线电缆中所通过的工作电流:

            Iw=P·1000/√3·UN·cosφpj

式中:

UN  电网额定电压,伏;

     cosφpj   平均功率因数。

供多台电动机的干线电缆,由于每一段电缆所流过的电流不同,应分段按电流大小选择各段电缆截面,如差别不大时,一般选用同一截面。

向三台以上电动机供电时,负荷功率应按需用系数法计算。

             P=Kx·∑PN

式中:

P  干线电缆所供负荷和计算功率,KW;

     Kx  需用系数;kx=0.286+0.714(Pmax/∑Pe)

     ∑PN  干线电缆所供电动机额定功率之和,KW。

     Pmax 最大电动机的额定功率,kW。

 

MY-0.3/0.66KV电缆载流量

型号规格

载流量(A)

 

 

 

3×4+1×4

 

 

 

 

3×6+1×6

 

 

 

 

3×10+1×10

 

 

 

 

3×16+1×10

66

 

 

 

3×25+1×16

84

 

 

 

3×35+1×16

100

 

 

 

3×50+1×16

125

 

 

 

3×70+1×25

160

 

 

 

3×95+1×25

 

 

 

 

 

2、按正常工作时电压损失确定电缆截面

⑴变压器中的电压损失计算

△UB%=β(URcosφ+UXsinφ)

△UB=△UB%·U2N/100

式中:

β 变压器的负荷系数,β=IN/I2N

     IN   变压器正常运行时低压侧负荷电流,安;

     I2N  变压器低压侧额定电流,安;

     UR   变压器额定负荷时变压器中的电阻压降百分数,    UR=[△P/(10·SN)]%;△P为变压器的短路损耗;

     UX    变压器额定负荷时变压器中的电抗压降百分数,

            UX=(UK2-UR2)1/2

cosφ、sinφ 变压器负荷中的功率因数;

     U2N      变压器二次侧额定电压,伏。

⑵电缆中电压损失计算

三相的线电压损失为:

△U=√3(IRcosφ+IXsinφ) 伏

式中:

R 导线电阻,欧;

     X 导线电抗,欧。

对于井下低压网络,通常忽略掉电抗电压损失部分,作近似计算,

△U=√3·IRcosφ 伏

以R=L/γS代入上式得:

           ΔU=√3·I·Lcosφ/γS 伏

式中:

I 流过电缆的负荷电流,安;

     L 电缆线路的长度,米

    γ 电导率,铜芯软电缆取42.5;铜芯铠装电缆取48.5;

     S   导线截面,mm2;

cosφ  电动机功率因数。

从上式可以看出,当线路的长度、材料、负荷电流及电压损失一定的情况下,可以求出导线截面S的大小。

如用负荷功率代替负荷电流,则可得计算电缆支线(即该电缆只带一个负荷)的电压损失公式为:

ΔUZ=kfPeLz×103/γUeSzηd

式中:

ΔUZ   支线电缆电压损失,伏;

 kf   负荷率;即用电设备实际负荷与额定负荷之比。

一般取0.7~0.8;

      Pe   电动机额定功率,KW;

      Lz   支线电缆长度,米;

      γ 电导率,m/Ω·mm2

  Sz   支线电缆导线截面,mm2

  ηd   电动机效率。

当电缆带几个负荷时,则可得电缆干线的电压损失公式为:

ΔUG=kf∑PeLG×103/γUeSGηpj

或      ΔUG=kx∑PeLG×103/γUeSG

ΔUG   干线电缆电压损失,伏;

kx    需用系数;

∑Pe   电缆负荷的总额定功率,KW;

SG   干线电缆导线截面,mm2

ηpj    电动机的加权平均效率。

以上是采区低压电网电压损失计算方法,主要由三部分组成:

变压器绕组中的电压损失△UB、干线电缆的电压损失ΔUG、支线电缆的电压损失ΔUZ。

以上三种电压损失之和∑△U应不大于规程规定的电压损失值△UY。

即:

ΔUB+ΔUG+ΔUZ=∑△U≤△UY=U2e-UD

式中:

U2e   变压器二次额定电压,它约等于1.05Ue,Ue为电网额定电压,伏;

UD   在正常工作时,电动机端子上的最低允许电压,伏;

△UY    采区电网最大允许电压损失。

 

在电网不同额定电压Ue时,U2e、UD及△UY值

电网额定电压Ue

U2e

UD

△UY

380

400

361

39

660

690

627

63

1140

1200

1083

117

⑶按起动条件校验电缆截面

采区移动设备的电动机均为鼠笼式电动机,且为直接起动,起动电流为额定电流的5~7倍。

为确保电动机能够正常起动,磁力起动器能够吸合,电动机起动时的端电压应满足电动机最低起动电压和磁力起动器最低吸合电压,为额定电压的75%。

验算时以距配电点最远,且功率最大的电动机为依据。

按这种条件验算的结果如能满足要求,那对其它设备就都能满足要求。

电动机起动时电网允许电压损失为:

   △UQY=U2e-0.7Ue

式中:

△UQY   电动机起动时电网允许电压损失,伏;

       U2e    变压器二次额定电压,伏;

       Ue   电动机的额定电压,伏。

把电动机起动时的电流及起动时的功率因数等有关量,代入正常工作时变压器、电缆的电压损失公式中,计算各部分电压损失之和;然后与起动时允许电压损失进行比较,如不符合要求,则需增大电缆截面或采取适当措施。

采区供电设计之采区变压器选择

采区变压器选择主要有变压器容量、型号和台数。

选择前,首先要应根据采区用电负荷,计算出采区总供电需用容量(kVA)。

如总供电需用容量较小时,通常选择一台变压器;如供电需用容量较大时,就要选择两台或更多台变压器来供电。

对于后一种情况,要根据采区供电系统情况,用电负荷的性质、容量来合理分配负荷,经综合分析比较后,再确定变压器的台数及容量。

变压器的容量选择是否合理关系到以后运行的经济性及安全性。

过大造成浪费,过小会使变压器经常过负荷运行,缩短使用寿命,也不利于供电安全。

在设计中通常用以下公式确定变压器的需用容量:

SBj=(∑Pekfkt)/cosφpjηpjηw

式中 SBj     变压器的计算需用容量(kVA);

    ∑Pe   联结到变压器的用电设备总的额定容量(kw);        

kf      负荷率,即用电设备实际负荷与额定负荷之比。

一般取0.7~0.8;

kt      同时系数或同时率,同时运转的设备容量之和与全部用电设备容量之和的比。

一般取0.8~0.9;

cosφpj   电动机的加权平均功率因数。

一般取0.8~0.9;

ηpj       电动机的加权平均效率。

一般取0.8~0.9;

ηw       低压电网效率。

一般取0.9~0.95;

在设计中,通常采用以下简化公式近似确定变压器计算容量

SBj=∑Pekx/cosφpj

式中:

kx    需用系数(需用率)。

 kx=kfkt/ηpjηw

(kx0.65~0.7  cosφpj0.7~0.75)

 

煤矿常用设备的需用系数kx及平均功率因数cosφp.j近似值表

设备名称

需用系数kx

功率因数  cosφpj

备  注

提升机房:

主电动机

         辅助设备

 

0.75~0.8

 

0.7

0.7

 

通风机房:

主电动机

       辅助电动机

 

0.8~0.85

  同步机时一般cosφ=0.9,为超前

0.3~0.5

0.7

压风机房:

主电动机

       辅助电动机

0.8~0.85

0.8~0.85

0.7

0.75

主排水设备

0.85

0.85

 

车间

0.6~0.65

0.7

 

水泵房

0.7~0.8

0.75

 

室内照明

0.5~1.0

1.0

无电容补偿的日光灯和水银灯cosφ=0.6

一般机采工作面

0.4~0.5

0.6~0.7

 

缓倾斜炮采工作面

0.5~0.6

0.6

 

急倾斜炮采工作面

0.3~0.4

0.7

 

掘进工作面

0.45~0.65

0.6

 

架线电机车

0.8

0.9

 

蓄电池电机车

0.5

0.9

 

井底车场:

有主排水

         无主排水

0.75~0.85

0.7

 

 

0.8

 

输送机

0.6~0.7

0.7

 

如为一般机组采煤、金属个体支架的工作面,可按下式计算需用系数。

             kx=0.286+0.714(Pmax/∑Pe)

式中:

∑Pe 参加计算的所有用电设备额定功率(kW)之和(不含备用);

     Pmax 最大电动机的额定功率(kW)。

两个及两个以上的工作面,当由一个采区变电所供电时,将其电力负荷之和乘以各工作面间的同时系数kt。

如为两个工作面, 取kt=0.95;三个及三个以上工作面时,取kt=0.9。

最后,根据变压器的计算容量,所选变压器的额定容量应大于或等于计算容量,即:

            SBe≥SBj

式中:

SBe 变压器额定容量(kVA)。

采区供电设计之采区高压短路电流计算及高压设备选择

一、采区高压短路电流计算

1、变压器高压侧短路电流计算

为校验采区高压配电装置的开断能力,必须求出采区变压器高压侧短路电流(如附图四所示):

          Id(3)=Up/√3(R2+(Xy+X)2)1/2   安

式中:

Up   高压电网平均电压,伏

     Xy   换算到井下中央变母线上的电源电抗,欧;可用下式计算

                       Xy=Up2/Sd  (欧)

R、X   中央变至采变的高压电缆的电阻和电抗;欧。

2、变压器低压侧短路电流的简便计算方法

该方法是在忽略系统阻抗的条件下计算出来,其值比实际略大一些。

①三相短路电流计算

       IK(3)=100IN2/UK

式中:

IK(3)  三相短路电流,安;

IN2   变压器二次侧额定电流,安;

        UK   变压器阻抗电压百分数,%。

②二相短路电流值

          IK

(2)=0.866IK(3)

二、高压配电箱的选择

在采区变的变压器高压侧采用高压防爆配电箱,选择原则如下:

1、额定电压应符合高压网络的电压等级;

2、额定电流不小于所控制设备的额定电流;

3、额定开断电流不小于母线最大三相短路电流。

新型高压防爆配电箱主要技术数据

高压配电箱型 号

额定电流(A)

额定电压(KV)

额定开断电流(kA)

额定断流容量(MVA)

PBG12-- /6  (河南济源)

50

6KV(最高工作电压6.9KV)

10kA

100

100

150

200

PBG-- /10   (浙江华荣)

50

6/10KV

12.5kA

6kV时不少于120,计算时按100。

100

150

200

采区供电设计之采区低压电网短路电流计算

短路电流的计算是为了正确选择和校验电气设备,使其满足电流的动、热稳定性的要求。

对于低压开关设备和熔断器等,还应按短路电流校验其分断能力。

计算短路电流时,首先要选择好短路点,短路点通常选择在被保护线路的始、末端。

始端短路点用于计算最大三相短路电流,用于校验设备和电缆的动、热稳定性;末端用于计算最小二相短路电流,用于校验继电保护整定值的可靠性。

短路电流的计算方法有解释法和图表法,主要以解释法为主。

一、短路电流的计算公式

1、三相短路电流计算:

       IK(3)=UN2/{√3·[(∑R)2+(∑X)2]1/2}

式中:

IK(3)    三相短路电流,安;

     UN2    变压器二次侧额定电压,对于127、380、660伏电网,分别取133、400、690伏;

∑R、∑X   短路回路内一相的电阻、电抗的总和,欧。

2、二相短路电流计算:

IK

(2)=UN2/{2·[(∑R)2+(∑X)2]1/2}

式中:

IK

(2)    二相短路电流,安;

3、三相短路电流与二相短路电流值的换算

        IK(3)=2IK

(2)/√3=1.15IK

(2)

或      IK

(2)=0.866IK(3)

二、阻抗计算

1、系统电抗

          XS=UN22/SK

式中:

XS   折合至变压器二次侧的系统电抗,欧/相;

 UN2   变压器二次侧的额定电压,KV;

 SK    电源一次侧母线上的短路容量,MVA。

XS、SK   指中央变电所母线前的电源电抗和母线短路容量。

如中央变的短路容量数据不详,可用防爆配电箱的额定断流容量代替计算。

        

额定断流容量与系统电抗值   (欧)

断流容量MVA      额定电压V

25

30

40

50

400

0.0064

0.0053

0.004

0.0032

690

0.019

0.0159

0.0119

0.0095

 

2、变压器阻抗(可查参考文献3附录六表19-3)

变压器每相电阻、电抗按下式计算:

           RB=ΔP/3IN22=ΔP·UN22/SN2

                  XB=10UX%·UN22/SN=10(UK2-UR2)1/2·UN22/SN

式中:

RB、XB   分别为变压器每相电阻和电抗值,欧;

      UX    变压器绕组电抗压降百分值,%;UX=(UK2-UR2)1/2

UK     变压器绕组阻抗压降百分值,%;

UR     变压器绕组电阻压降百分值,%;UR=[△P/(10·SN)]%

ΔP   变压器短路损耗,瓦;

UN2、IN2     变压器二次侧额定电压(KV)和电流(A);

SN      变压器额定容量,KVA。

3、高压电缆的阻抗

高压电缆的阻抗折合至变压器二次侧的数值可按下式计算,同时计算出的电阻数据应换算至65℃时的数据。

      电阻:

      R=R0L/K2; 欧      

电抗:

      X=X0L/K2     欧

式中:

R0   高压电缆每公里的电阻,欧。

                R0=1000ρ0/S

     ρ0    导电线芯的直流电阻系数,20℃时不小于下列数值:

           铜芯:

0.0184Ω·mm2/m

           铝芯:

0.0310Ω·mm2/m

S  电缆线芯截面,mm2

X0  高压电缆每公里电抗,欧;对6~10KV电压,电抗平均值为:

0.08欧/公里。

L   电缆长度, 米。

K   变压比,变压器一次侧平均电压与二次侧平均电压的比值。

6KV电缆折合至下列电压后每公里的阻抗值(欧/相)

电缆截面  mm2

(线芯温度65℃)

铜芯

400V

690V

25

0.0035

0.0106

35

0.0025

0.0076

50

0.0018

0.0055

70

0.0012

0.0037

95

0.0009

0.0029

 

4、低压电缆的电阻和电抗(可查参考文献3附录三表5-1)

所提供的数据如是20℃时的数据,应换算到65℃的数据,按下式计算:

             R=R20[1+0.004(t-20)]

即:

 R65=1.18R20

阻抗

电缆型号

电缆线芯截面(mm2)

4

6

10

16

25

35

50

70

电阻

UZ

6.36

 

 

 

 

 

 

 

U或UP

5.50

3.69

2.16

 

 

 

 

 

UC

 

 

2.18

 

 

 

 

 

MY

 

 

 

1.21

0.78

0.554

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1