numerical analysis chapra 5ESM30.docx

上传人:b****3 文档编号:3443725 上传时间:2022-11-23 格式:DOCX 页数:41 大小:1.07MB
下载 相关 举报
numerical analysis chapra 5ESM30.docx_第1页
第1页 / 共41页
numerical analysis chapra 5ESM30.docx_第2页
第2页 / 共41页
numerical analysis chapra 5ESM30.docx_第3页
第3页 / 共41页
numerical analysis chapra 5ESM30.docx_第4页
第4页 / 共41页
numerical analysis chapra 5ESM30.docx_第5页
第5页 / 共41页
点击查看更多>>
下载资源
资源描述

numerical analysis chapra 5ESM30.docx

《numerical analysis chapra 5ESM30.docx》由会员分享,可在线阅读,更多相关《numerical analysis chapra 5ESM30.docx(41页珍藏版)》请在冰豆网上搜索。

numerical analysis chapra 5ESM30.docx

numericalanalysischapra5ESM30

CHAPTER30

30.1ThekeytoapproachingthisproblemistorecastthePDEasasystemofODEs.Thus,bysubstitutingthefinite-differenceapproximationforthespatialderivative,wearriveatthefollowinggeneralequationforeachnode

Bywritingthisequationforeachnode,thesolutionreducestosolving4simultaneousODEswithHeun’smethod.Theresultsforthefirsttwostepsalongwithsomelaterselectedvaluesaretabulatedbelow.Inaddition,aplotsimilartoFig.30.4,isalsoshown

t

x=0

x=2

x=4

x=6

x=8

x=10

0

100

0

0

0

0

50

0.1

100

2.043923

0.021788

0.010894

1.021962

50

0.2

100

4.005178

0.084022

0.042672

2.002593

50

3

100

37.54054

10.27449

6.442319

18.95732

50

6

100

53.24294

24.66052

17.4603

27.92251

50

9

100

62.39032

36.64937

27.84901

34.34692

50

12

100

68.71331

46.03498

36.54213

39.5355

50

30.2Becausewenowhavederivativeboundaryconditions,theboundarynodesmustbesimulated.Fornode0,

(i)

Thisintroducesanexteriornodeintothesolutionati=1.Thederivativeboundaryconditioncanbeusedtoeliminatethisnode,

whichcanbesolvedfor

whichcanbesubstitutedintoEq.(i)togive

Forourcase,dT0/dx=1andx=2,andthereforeT1=T1–4.ThiscanbesubstitutedintoEq.(i)togive,

Asimilaranalysiscanbeusedtoembedthezeroderivativeintheequationforthenthnode,

(ii)

Thisintroducesanexteriornodeintothesolutionatn+1.Thederivativeboundaryconditioncanbeusedtoeliminatethisnode,

whichcanbesolvedfor

whichcanbesubstitutedintoEq.(ii)togive

Forourcase,n=5anddTn/dx=0,andtherefore

Togetherwiththeequationsfortheinteriornodes,theentiresystemcanbesolvedwithastepof0.1s.Theresultsforsomeoftheearlystepsalongwithsomelaterselectedvaluesaretabulatedbelow.Inaddition,aplotofthelaterresultsisalsoshown

t

x=0

x=2

x=4

x=6

x=8

x=10

0

25.0000

25.0000

25.0000

25.0000

25.0000

25.0000

0.1

24.9165

25.0000

25.0000

25.0000

25.0000

25.0000

0.2

24.8365

24.9983

25.0000

25.0000

25.0000

25.0000

0.3

24.7597

24.9949

25.0000

25.0000

25.0000

25.0000

0.4

24.6861

24.9901

24.9999

25.0000

25.0000

25.0000

0.5

24.6153

24.9840

24.9997

25.0000

25.0000

25.0000

200

5.000081

6.800074

8.200059

9.200048

9.800042

10.00004

400

-11.6988

-9.89883

-8.49883

-7.49882

-6.89881

-6.69881

600

-28.4008

-26.6008

-25.2008

-24.2008

-23.6007

-23.4007

800

-45.1056

-43.3056

-41.9056

-40.9056

-40.3056

-40.1056

1000

-61.8104

-60.0104

-58.6104

-57.6104

-57.0104

-56.8104

Noticewhat’shappening.Therodneverreachesasteadystate,becauseoftheheatlossattheleftend(unitgradient)andtheinsulatedcondition(zerogradient)attheright.

30.3Thesolutionfort=0.1is(ascomputedinExample30.1),

t

x=0

x=2

x=4

x=6

x=8

x=10

0

100

0

0

0

0

50

0.1

100

2.0875

0

0

1.04375

50

0.2

100

4.087847

0.043577

0.021788

2.043923

50

Fort=0.05,itis

t

x=0

x=2

x=4

x=6

x=8

x=10

0

100

0.000000

0.000000

0.000000

0.000000

50

0.05

100

1.043750

0.000000

0.000000

0.521875

50

0.1

100

2.065712

0.010894

0.005447

1.032856

50

0.15

100

3.066454

0.032284

0.016228

1.533227

50

0.2

100

4.046528

0.063786

0.032229

2.023265

50

Toassessthedifferencesbetweentheresults,weperformedthesimulationathirdtimeusingamoreaccurateapproach(theHeunmethod)withamuchsmallerstepsize(t=0.001).Itwasassumedthatthismorerefinedapproachwouldyieldapredictionclosetotruesolution.ThesevaluescouldthenbeusedtoassesstherelativeerrorsofthetwoEulersolutions.Theresultsaresummarizedas

x=0

x=2

x=4

x=6

x=8

x=10

Heun(h=0.001)

100

4.006588

0.083044

0.042377

2.003302

50

Euler(h=0.1)

100

4.087847

0.043577

0.021788

2.043923

50

ErrorrelativetoHeun

2.0%

47.5%

48.6%

2.0%

Euler(h=0.05)

100

4.046528

0.063786

0.032229

2.023265

50

ErrorrelativetoHeun

1.0%

23.2%

23.9%

1.0%

Notice,thataswouldbeexpectedforEuler’smethod,halvingthestepsizeapproximatelyhalvestheglobalrelativeerror.

30.4TheapproachdescribedinExample30.2mustbemodifiedtoaccountforthezeroderivativeattherighthandnode(i=5).Todothis,Eq.(30.8)isfirstwrittenforthatnodeas

(i)

Thevalueoutsidethesystem(i=6)canbeeliminatedbywritingthefinitedifferencerelationshipforthederivativeatnode5as

whichcanbesolvedfor

Forourcase,dT/dx=0,soT6=T4andEq.(i)becomes

Thus,thesimultaneousequationstobesolvedatthefirststepare

whichcanbesolvedfor

Forthesecondstep,theright-handsideismodifiedtoreflectthesecomputedvaluesofTatt=0.1,

whichcanbesolvedfor

30.5ThesolutionisidenticaltoExample30.3,butwith9interiornodes.Thus,thesimultaneousequationstobesolvedatthefirststepare

whichcanbesolvedfor

Forthesecondstep,theright-handsideismodifiedtoreflectthesecomputedvaluesofTatt=0.1,

whichcanbesolvedfor

30.6UsingtheapproachfollowedinExample30.5,Eq.(30.20)isappliedtonodes(1,1),(1,2),and(1,3)toyieldthefollowingtridiagonalequations

whichcanbesolvedfor

Inasimilarfashion,tridiagonalequationscanbedevelopedandsolvedfor

and

Forthesecondsteptot=10,Eq.(30.22)isappliedtonodes(1,1),(2,1),and(3,1)toyield

whichcanbesolvedfor

Tridiagonalequationsfortheotherrowscanbedevelopedandsolvedfor

and

Thus,theresultattheendofthefirststepcanbesummarizedas

i=0

i=1

i=2

i=3

i=4

j=4

90

120

120

120

85

j=3

60

13.46293

9.820288

12.86944

50

j=2

60

5.050756

0.815685

4.29281

50

j=1

60

4.47395

0.416205

3.737833

50

j=0

30

0

0

0

25

Thecomputationcanberepeatedandtheresultsfort=2000sareshownbelow:

i=0

i=1

i=2

i=3

i=4

j=4

90

120

120

120

85

j=3

60

80.71429

83.83929

77.14286

50

j=2

60

59.01786

57.5

54.73214

50

j=1

60

37.85714

32.41071

34.28571

50

j=0

30

0

0

0

25

30.7Althoughthisproblemcanbemodeledwiththefinite-differenceapproach(seeSec.32.1),thecontrol-volumemethodprovidesamorestraightforwardwaytohandletheboundaryconditions.Thus,thetankisidealizedasaseriesofcontrolvolumes:

Theboundaryfluxesandthereactiontermcanbeusedtodevelopthediscreteformoftheadvection-diffusionequationfortheinteriorvolumesas

ordividingbothsidesbyx,

whichispreciselytheformthatwouldhaveresultedbysubstitutingcenteredfinitedifferenceapproximationsintotheadvection-diffusionequation.

Forthefirstboundarynode,nodiffusionisalloweduptheentrancepipeandadvectionishandledwithabackwarddifference,

ordividingbothsidesbyx,

Forthelastboundarynode,nodiffusionisallowedthroughtheexitpipeandadvectionoutofthetankisagainhandledwithabackwarddifference,

ordividingbothsidesbyx,

Bywritingtheseequationsforeachequally-spacedvolume,thePDEistransformedintoasystemofODEs.ExplicitmethodslikeEuler’smethodorotherhigher-orderRKmethodscanthenbeusedtosolvethesystem.

Theresultswithaninitialconditionthatthereactorhaszeroconcentrationwithaninflowconcentrationof100(usingEulerwithastepsizeof0.005)fort=100are

x

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

c

42.0320

41.5128

41.0509

40.6463

40.2989

40.0087

39.7760

39.6008

39.4836

39.4248

Aplotoftheresultsisshownbelow:

 

30.8HereisaVBAprogramthatimplementstheexplicitmethod.ItissetuptoduplicateExample30.1.

OptionExplicit

SubExplicit()

DimiAsInteger,jAsInteger,npAsInteger,nsAsInteger

DimTe(20)AsDouble,dTe(20)AsDouble,tpr(20)AsDouble,Tepr(20,20)AsDouble

DimkAsDouble,dxAsDouble,LAsDouble,tcAsDouble,tfAsDouble

DimtpAsDouble,tAsDouble,tendAsDouble,hAsDouble,tolAsDouble

DimxAsDouble

tol=0.000001

L=10

ns=5

dx=L/ns

k=0.835

Te(0)=100

Te(5)=50

tc=0.1

tf=12

tp=3

np=0

tpr(np)=t

Fori=0Tons

Tepr(i,np)=Te(i)

Nexti

Do

tend=t+tp

Iftend>tfThentend=tf

h=tc

Do

Ift+h>tendThenh=tend-t

CallDerivs(Te,dTe,ns,dx,k)

Forj=1Tons-1

Te(j)=Te(j)+dTe(j)*h

Nextj

t=t+h

Ift>=tendThenExitDo

Loop

np=np+1

tpr(np)=t

Forj=0Tons

Tepr(j,np)=Te(j)

Nextj

Ift+tol>=tfThenExitDo

Loop

Sheets("sheet1").Select

Range("a4:

bb5000").ClearContents

Range("a4").Select

ActiveCell.Value="time"

x=0

Forj=0Tons

ActiveCell.Offset(0,1).Select

ActiveCell.Value="x="&x

x=x+dx

Nextj

Range("a5").Select

Fori=0Tonp

ActiveCell.Value=tpr(i)

Forj=0Tons

ActiveCell.Offset(0,1).Select

ActiveCell.Value=Tepr(j,i)

Nextj

ActiveCell.Offset(1,-ns-1).Select

Nexti

Range("a5").Select

EndSub

SubDerivs(Te,dTe,ns,dx,k)

DimjAsInteger

Forj=1Tons-1

dTe(j)=k*(Te(j-1)-2*Te(j)+Te(j+1))/dx^2

Nextj

EndSub

Whentheprogramisrun,theresultis

30.9ThisVBAprogramissetuptoeitheruseDirichletorgradientboundaryconditionsdependingonthevaluesoftheparametersistrtandiend.ItissetuptosolvethefirstfewstepsofProb.30.2.

OptionExplicit

SubEulerPDE()

DimiAsInteger,jAsInteger,npAsInteger,nsAsInteger

Dimis

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1