Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx

上传人:b****5 文档编号:3427534 上传时间:2022-11-23 格式:DOCX 页数:16 大小:294.04KB
下载 相关 举报
Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx_第1页
第1页 / 共16页
Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx_第2页
第2页 / 共16页
Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx_第3页
第3页 / 共16页
Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx_第4页
第4页 / 共16页
Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx

《Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx》由会员分享,可在线阅读,更多相关《Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx(16页珍藏版)》请在冰豆网上搜索。

Comparison of Smart Rotor Blade Concepts for Large Offshore Wind Turbines.docx

ComparisonofSmartRotorBladeConceptsforLargeOffshoreWindTurbines

ComparisonofSmartRotorBladeConceptsforLargeOffshoreWindTurbines

B.A.H.MarrantandTh.vanHolten

DelftUniversityofTechnology,FacultyofAerospaceEngineering

Kluyverweg1,2629HSDelft,TheNetherlands

Tel.:

+31(0)152785171

Fax.:

+31(0)152783444

E-mail:

B.Marrant@lr.tudelft.nl

Keywords:

offshore,windturbines,fatigueloads,smartmaterials,activerotorcontrol

Abstract

Thispaperprovidestheresultsofacomparisonoffourdifferentsmartstructureconceptstoobtainactiverotorcontrolonlargeoffshorewindturbines.Theconceptsareactivetrailing-edgeflapcontrol,micro-electro-mechanicaltabcontrol,cambercontrolwithinflatablestructuresandactivebladetwistcontrol.Thedifferentsmartrotorbladeconceptsarecomparedwitheachotherbasedontheirpotentialtoreducefatigueloadsforparticulardimensions,theiraerodynamicefficiency,bandwidthandcomplexity.

Introduction

Theaimoftheresearchprojectonsmartdynamicrotorcontrolforlargeoffshorewindturbinesistodevelopnewtechnologycapableofconsiderablyreducingtheextremeandfatigueloadsonwindturbines–inparticularonverylargewindturbinesforoffshoreapplication–andtherebytoreducethecostsofwindturbines.Asecondaimistoreducemaintenancerequirementsandimprovereliabilitybyapplyingcondition-monitoringtechniques.

Thewaytoachievethisistoimplementrecentadvancesincontroltheory,sensor-andactuatortechnology,smartstructures,etc.takingintoaccountthespecialrequirementsandconditionsofoffshorewindturbines.TheFLEXHAT-programperformedintheNetherlandssomeyearsagohasshownthat“smart”controlmethodsmayhaveasignificanteffectonthevariousloads[1].Thepurposeoftheformerprojectwastodecreaseloadsinthedrivetrainandtherotorbladesbyusingpassivetipcontrolandflexibilitiesintherotorsystem.Unfortunately,thetechniquesusedwithintheFLEXHATconfigurationwerenotsuitableforincorporationintoverylargewindturbines.Therefore,differentsolutionsneedtobedeveloped.

Inapreliminarystudy[2,3]onsmartdynamicrotorcontrolforlargeoffshorewindturbinesdifferentconceptshavealreadybeeninvestigatedinwindenergyandhelicopterliterature.Helicopterliteraturehasalsobeenstudiedbecauseofitscloserelationtothefieldofwindturbines.Moreover,smartdynamicrotorcontrolforthepurposeofe.g.vibrationreductionisarelativelynewconceptinwindenergywhereasthistopichasbeenthesubjectofstudyformanyyearsinthefieldofhelicopters[4],[10].

Thetwoapproacheswhichwillbeusedtoreducethestructuralloadsonwindturbinesarethereductionofthefluctuationsofaerodynamicloadsandtheactive/passivedampingofstructuralmodes[5].Inthepreliminarystudyalistofcontroldevicesforrotorbladeswasmadewhichcouldbeusedtocontroltheextremeandfatigueloads.Thislistincludedtrailing-edgeflapcontrol(possiblycombinedwithleading-edgeflapcontrol),Micro-Electro-Mechanicaltabcontrol,activetwistcontrol,part-spanandfull-spanpitchcontrolandcambercontrol.Thisstudyfocusedmainlyonthefeasibilityofsmartmaterialsasameanstoactuatethedevices.Theseconceptshavealreadybeenpresentedinreference[6].

Thispaperwillcontinuethepreviousworkwiththepurposetomakearankingofdevicesforthepurposeofsmartdynamicrotorcontrol.Themostpromisingdevicesareconsideredtobetrailing-edgeflapsandMicro-Electro-Mechanicaltabsbecauseoftheirrelativesimplicityandtheirpotential.Ontopofthesetwodevicesactivetwistandvariablecamberwiththeuseofinflatablestructuresarealsoincluded.Theactuatorswhichareconsideredinthispaperaremainlysmartmaterialactuatorsbasedonpiezoelectricmaterials.Thedifferentconceptsthatresultfromthedevicesandactuatorsarecomparedwitheachotherbasedontheirpotentialtoreduceaerodynamicloads,theiraerodynamicefficiency,bandwidthandcomplexity.

Approachtocomparethesmartbladeconcepts

Thefoursmartbladeconceptswhichwerementionedbeforewillbecomparedwitheachotherbasedontheirabilitytoreducefatigueloadsduringnormaloperationofthewindturbine.Thefatigueloadsareusedasabasistocomparetheconceptsbecausewindturbinedesignsareoftengovernedbyfatigue[12]andbecausenoneofthesmartbladeconceptsmentionedpreviouslywillhavethepowertoreducetheextremeloadscompletely.Thefatigueloadcaseduringnormalpowerproduction(DLC1.2),asdescribedintheIECstandard[7],hasbeenusedasabasisforthecomparisonbecausethiswillbethephaseduringwhichthesmartbladewillbeoperatingmostofitstime.Thismeansthatnormalpowerproductionwiththeoccurrenceofanemergency,startup,normalshutdownandstandstillloadcaseshavenotbeenconsidered.

ThefatigueloadcalculationsfortheconventionalbladeandthesmartbladeconceptshavebeenperformedforwindturbineclassIBbecausethisinvolvesahighreferencewindspeedaverageover10minutes(Vref=50m/s)andamediumturbulenceintensityat15m/s(Iref=0.14)whichisconsideredtoberepresentativeforoffshorewindconditions.

Theturbulencemodelwhichhasbeenusedisathree-dimensional,onecomponentmodel,whichmeansthatthewindspeedvariesovertherotordiscareaintime.ThemethodtosimulateturbulencemakesuseofFourierseriestocreateanumberofcorrelatedtimeseriesfromthelongitudinalvelocitycomponentspectrum(S1(f))andacoherencefunction.TheturbulencespectrumusedfortheanalysisistheKaimalspectrum:

(1)

where

1=Iref(0.75Vhub+5.6):

isthelongitudinalturbulencestandarddeviationwithIref=0.14

L1:

isthelongitudinalvelocityintegralscale,whereL1=8.11

Vhub:

isthewindspeedathubheight

f:

isthefrequencyinHertz

isthelongitudinalturbulencescaleparameter

Thefollowingexponentialcoherencemodel(Coh(r,f))isusedinconjunctionwiththeKaimalautospectrumtoaccountforthespatialcorrelationofthelongitudinalwindspeedcomponent:

(2)

whereristhemagnitudeoftheprojectionoftheseparationvectorbetweenthetwopointsontoaplanenormaltotheaveragewinddirection.

Figure1:

Turbulenceforawindspeedof13m/sovertheheight(z)andthewidth(y)

Anexampleoftheturbulenceatawindspeedof13m/sattimet=0canbeseeninfigure1wherethetotalgridspans60mx60m,thegridinterspacingis4mandthehubheightis91.4m.Theturbulencewasrotationallysampledbyselectingwindspeedsoutofthecompletewindfieldatpointsinspaceandtimecorrespondingtopositionsoftherotatingbladeofahorizontalaxiswindturbine.Correlatedtimeseriesweregeneratedin60equallyspacedpointsontherotorbladeandlinearinterpolationhasbeenusedwhenthepointonthebladewasinbetweenthegridpoints.

Thedeterministicpartofthewindfieldonlyconsistedofwindshearwherethelongitudinalwindspeedisgivenbythefollowingpowerlaw:

(3)

Thefatigueloadsforthedifferentsmartrotorbladeconceptsarecomparedmakinguseofabenchmarkwindturbine.ForthispurposeanoffshorewindturbinederivedfromtheDOWEC(DutchOffshoreWindEnergyConverter)windturbinestudy[9]isusedsincethisinvolvesahorizontalaxis(HAWT),upwind,pitch-regulated,variablespeedturbinewhichhasthesizeandcharacteristicsofawindturbinethisresearchisintendedfor.AdrawingoftheoriginalDOWECdesigncanbeseeninfigure2andsomecharacteristicdataofthisbenchmarkturbinearepresentedintable1.

Cut-inwindspeedVin

3.0m/s

Cut-outwindspeedVout

25m/s

RatedwindspeedVr

12m/s

Tipspeedratior

7.4

Hubheightzhub(abovethewater)

91.4m

RotordiameterD

120m

RatedpowerPr

6.0MW

Figure2:

DOWECwindturbineTable1:

Characteristicdataofthebenchmarkwindturbine

ForthecalculationsoftheloadstheWindsim[18]packagehasbeenusedwithafewalterationsinordertobeabletocalculatetheaerodynamicloadingduetoadistributedwindfield.ThispackageusesBEMtheoryforthecalculationsoftheaerodynamicloadsinwhichthewakeisapproximatedasconstantovertherotordiscarea.Thesmartrotorbladeconceptswerecomparedbycalculatingtheirfatiguedamagerelativetotheconventionalblade.Asafirstapproximationthedynamicsofthebladeareneglectedandonlythevariableaerodynamicloadingduetothevariablewindfieldisconsidered.Themaximumloadalleviationcapacityofthesmartstructureshasbeenusedintheanalysiswhereithasbeenassumedthatthesmartrotorbladeknowsexactlywhatthewindfieldlookslikeateverytimestep,moreoverasafirstapproximationthesmartbladeisassumedtoreactinstantaneouslytotheloadchange.Makingtheseassumptionshastheinherentadvantagethatthecontrollercanbeleftoutoftheanalysiswhichleadstoamorestraightforwardcomparisonofthesmartrotorbladeconcepts.Thiswayafirstestimatecanbemadeoftheminimumrequireddimensions,deflectionsanddeflectionratesforthedifferentsmartstructureconcepts.

Thesmartrotorbladeconceptswhichareabletoaltertheaerodynamicbladeloadscanbedividedintotwocategories:

bladeswhichareabletoactivelychangetheairfoil’scambertherebyshiftingthecl-curveup-ordownwardandbladeswhichareabletochangethelocalangle-of-attackinordertoobtainchangesinliftcoefficient.Trailing-edgeflaps,MEM-tabsandvariablecambercontrolbelongtothefirstcategorywhereasactivetwistcontrolbelongstothesecond.

Figure3:

Variationofaerodynamicbladerootbending

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1