实用参考共轨式电控喷油系统.docx

上传人:b****6 文档编号:3358484 上传时间:2022-11-22 格式:DOCX 页数:10 大小:287.01KB
下载 相关 举报
实用参考共轨式电控喷油系统.docx_第1页
第1页 / 共10页
实用参考共轨式电控喷油系统.docx_第2页
第2页 / 共10页
实用参考共轨式电控喷油系统.docx_第3页
第3页 / 共10页
实用参考共轨式电控喷油系统.docx_第4页
第4页 / 共10页
实用参考共轨式电控喷油系统.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

实用参考共轨式电控喷油系统.docx

《实用参考共轨式电控喷油系统.docx》由会员分享,可在线阅读,更多相关《实用参考共轨式电控喷油系统.docx(10页珍藏版)》请在冰豆网上搜索。

实用参考共轨式电控喷油系统.docx

实用参考共轨式电控喷油系统

★柴油机共轨式电控燃油喷射技术产生的背景:

随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。

我国从80年代起相应制订了有关的标准,将环境保护作为大事来抓。

与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。

共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。

  柴油机高速运转时,柴油喷射过程的时间只有千分之几秒。

实验证明,喷射过程中,高压油管各处的压力是随时间和位置的不同而变化的。

柴油的可压缩性质和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。

油管内的压力波动有时还会在喷射时之后,使高压油管内的压力再次上升,达到令喷油器针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象。

由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,并使油耗增加。

此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低速区域容易产生上述现象。

严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。

为了解决柴油机燃油压力变化所造成的缺陷,现代柴油机采用了一种称之为“共轨”的电喷技术。

★什么是共轨技术?

共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。

ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。

★共轨式电控喷油系统

按照喷油高压形成的不同,共轨式电控燃油喷射系统有两种基本型式,即高压共轨式和中压共轨式。

 

(1)高压共轨系统。

高压输油泵(压力在120MPa以上)直接产生高压燃油后,输送至共轨中消除压力的脉动,再分送到各喷油器;当电子控制装置按需要发出指令信号后,高速电磁阀(响应在200s左右)迅速打开或关闭,进而控制喷油器工作,即按设定的要求喷出或停喷高压燃油。

  

(2)中压共轨系统。

中压输油泵(压力为10-13MPa)将中压燃油输送到共轨中消除压力的脉动,再分送至带有增压柱塞的喷油器中;当高速电磁阀开关阀接收到电子控制装置发送的指令信号后,就迅速开启或关闭,从而控制燃油器工作,迅即通过高压柱塞的增压作用,将从共轨中来的中压燃油加压至高压(120-150MPa)后喷出或停喷。

  高压共轨系统与中压共轨系统的主要判别在于,高压燃油的获得方式不同;前者由高压燃油泵直接提供,而后者则借助于增压柱塞增压后获得。

其典型代表有日本电装公司的高压共轨式喷油系统ECD--U2,英国LucasVaritR公司的LDCR型高压共轨喷油系统,德国Benz公司的OM611柴油机上的电控高压共轨喷油系统,美国BKM公司的Servojet共轨蓄压式电控喷射系统,美国Caterpillar公司的HEUI共轨液压式喷射系统。

★高压共轨系统的工作原理:

高压共轨系统是一种全新概念的喷油系统,给人耳目一新的感觉。

它可以全方位的改进柴油机性能,使得其成为目前柴油机研究领域的一大热门方向。

其组成主要包括高压泵、带压力调节阀的共轨管、带电磁阀的喷油器、电控单元和各种传感器。

低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期,由喷油器将燃油喷入气缸。

★日本电装公司的ECD-U2共轨喷油系统

日本电装(Denso)公司率先在上世纪九十年代初推出了名为ECD-U2的共轨燃油喷射系统。

ECD-U2共轨喷油系统由高压供油泵、共轨、喷油器以及控制这些部件的电子控制单元和各种传感器等组成(如图1)。

系统利用泵控制阀改变高压供油泵的燃油出油量来控制共轨压力,共轨压力根据发动机负荷和转速确定的数值而调节。

泵控制阀与燃油压力传感器相结合进行共轨压力的闭环控制。

★高压共轨系统的特点:

1.共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。

2.可独立地柔性控制喷油正时,配合高的喷射压力(120Mpa~200MPa),可同时控制NOR和微粒在较小的数值内,以满足排放要求。

3.柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NOR,又能保证优良的动力性和经济性。

4.由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。

 ★柴油共轨系统已开发了3代,它有着强大的技术潜力

  第一代共轨高压泵总是保持在最高压力,导致能量的浪费和很高的燃油温度。

第二代可根据发动机需求而改变输出压力,并具有预喷射和后喷射功能。

预喷射降低了发动机噪音:

在主喷射之前百万分之一秒内少量的燃油被喷进了气缸压燃,预加热燃烧室。

预热后的气缸使主喷射后的压燃更加容易,缸内的压力和温度不再是突然地增加,有利于降低燃烧噪音。

在膨胀过程中进行后喷射,产生二次燃烧,将缸内温度增加200~250℃,降低了排气中的碳氢化合物。

 由于其强大的技术潜力,今天各制造商已经把目光定在了共轨系统第3代——压电式(piezo)共轨系统,压电执行器代替了电磁阀,于是得到了更加精确的喷射控制。

没有了回油管,在结构上更简单。

压力从200~20RR巴弹性调节。

最小喷射量可控制在0.5mm3,减小了烟度和NOR的排放

★20RR年5月,Bosch公司开始批量生产第三代紧凑型压电直接控制式喷油器(图1)共轨喷油系统,这是柴油共轨喷射技术领域的重大举措。

该系统在160MPa系统压力和无排气后处理的情况下用于重型汽车时,排放值可达到欧4排放标准。

Bosch公司第三代共轨喷油系统可降低柴油机废气排放高达20%,此外还能提高功率5%,或降低燃油耗3%,或降低噪声3dB(A),这要视发动机开发目标而定。

下文介绍第三代共轨喷油系统及其部件和发动机试验结果。

图1轿车用压电共轨喷油器结构图

2第三代共轨喷油系统

图2V6柴油机用Bosch第三代共轨喷油系统布置图

燃油由低压电动燃油泵输送给具有泵油量调节功能的高压油泵,分配单元将进入的燃油分成两路:

一路供给泵油元件,另一路用以冷却传动机构和润滑轴承。

高压油泵将燃油压缩至最高压力达160MPa,并将其输入油轨。

拧紧在油轨上的油轨压力传感器采集实时压力,并通过集成在高压油泵上的分配单元进行燃油压力调节,而拧紧在油轨上的压力调节阀则用于在汽车加速行驶时快速泄压。

高压燃油经油轨到压电喷油器,它由电控单元根据运行工况来控制,能精确地调节喷油始点和喷油持续期,并且可柔性塑造喷油曲线(喷油相位、喷油次数和喷油量)形状。

★高压共轨系统的发展前景:

高压共轨系统被认为是20世纪内燃机技术的3大突破之一。

目前,有待研究的有:

1.高压共轨系统的恒高压密封问题。

2.高压共轨系统中共轨压力的微小波动所造成的喷油量不均匀问题。

3.高压共轨系统三维控制数据的优化问题。

4.微结构、高频响应电磁开关阀在制造过程中的关键技术问题。

综上所述,高压共轨式电控燃油喷射技术有助于减少柴油机的有害尾气排放量,并具有降低噪声、降低燃油耗、提高动力输出等方面的综合性能。

高压共轨电控燃油喷射技术的应用有利于地球环境保护,加速促进柴油机工业、汽车工业,特别是工程机械相关工业的向前发展

★高压共轨燃油喷射系统主要部件介绍

  图1为高压共轨电控燃油喷射系统的基本组成图。

它主要由电控单元、高压油泵、共轨管、电控喷油器以及各种传感器等组成。

低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。

  1、高压油泵

  高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。

由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。

  日电装公司采用了一个三作用凸轮的直列泵来产生高压,如图2所示。

该高压油泵对油量的控制采用了控制低压燃油有效进油量的方法,其基本原理如图3所示。

  a柱塞下行,控制阀开启,低压燃油经控制阀流入柱塞腔;

  b柱塞上行,但控制阀中尚未通电,处于开启状态,低压燃油经控制阀流回低压腔;

  c在达到供油量定时时,控制阀通电,使之关闭,回流油路被切断,柱塞腔中的燃油被压缩,燃油经出油阀进入高压油轨。

利用控制阀关闭时间的不同,控制进入高压油轨的油量的多少,从而达到控制高压油轨压力的目的;

  d凸轮经过最大升程后,柱塞进入下降行程,柱塞腔内的压力降低,出油阀关闭,停止供油,这时控制阀停止供电,处于开启状态,低压燃油进入柱塞腔进入下一个循环。

  该方法使高压油泵不产生额外的功率消耗,但需要确定控制脉冲的宽度和控制脉冲与高压油泵凸轮的相位关系,控制系统比较复杂。

  2、共轨管

  共轨管将供油泵提供的高压燃油分配到各喷油器中,起蓄压器的作用,ECD-U2系统的供轨管如图4所示。

它的容积应削减高压油泵的供油压力波动和每个喷油器由喷油过程引起的压力震荡,使高压油轨中的压力波动控制在5Mpa之下。

但其容积又不能太大,以保证共轨有足够的压力响应速度以快速跟踪柴油机工况的变化。

ECD-U2系统的高压泵的最大循环供油量为600mm3,共轨管容积为94000mm3。

  高压共轨管上还安装了压力传感器、液流缓冲器(限流器)和压力限制器。

压力传感器向ECU提供高压油轨的压力信号;液流缓冲器(限流器)保证在喷油器出现燃油漏泄故障时切断向喷油器的供油,并可减小共轨和高压油管中的压力波动;压力限制器保证高压油轨在出现压力异常时,迅速将高压油轨中的压力进行放泄。

  从上述分析可见,精确设计高压共轨管的容积和形状适合确定的柴油机是并不容易的。

  3、电控喷油器

<>

<>

  电控喷油器是共轨式燃油系统中最关键和最复杂的部件,它的作用根据ECU发出的控制信号,通过控制电磁阀的开启和关闭,将高压油轨中的燃油以最佳的喷油定时、喷油量和喷油率喷入柴油机的燃烧室。

  BOSCH和ECD-U2的电控喷油器的结构基本相似,都是由于传统喷油器相似的喷油嘴、控制活塞、控制量孔、控制电磁阀组成,图5为BOSCH的电控喷油器结构图。

在电磁阀不通电时,电磁阀关闭控制活塞顶部的量孔A,高压油轨的燃油压力通过量孔Z作用在控制活塞上,将喷嘴关闭;当电磁阀通电时,量孔A被打开,控制室的压力迅速降低,控制活塞升起,喷油器开始喷油;当电磁阀关闭时,控制室的压力上升,控制活塞下行关闭喷油器完成喷油过程。

  控制了喷油率的形状,需对其进行合理的优化设计,实现预定的喷油形状。

控制室的容积的大小决定了针阀开启时的灵敏度,控制室的容积太大,针阀在喷油结束时不能实现快速的断油,使后期的燃油雾化不良;控制室容积太小,不能给针阀提供足够的有效行程,使喷射过程的流动阻力加大,因此对控制室的容积也应根据机型的最大喷油量合理选择。

  控制量孔A、Z的大小对喷油嘴的开启和关闭速度及喷油过程起着决定性的影响。

双量孔阀体的三个关键性结构是进油量孔、回油量孔和控制室,它们的结构尺寸对喷油器的喷油性能影响巨大。

回油量孔与进油量孔的流量率之差及控制室的容积决定了喷油嘴针阀的开启速度,而喷油嘴针阀的关闭速度由进油量孔的流量率和控制室的容积决定。

进油量孔的设计应使喷油嘴针阀有足够的关闭速度,以减少喷油嘴喷射后期雾化不良的部分。

  此外喷油嘴的最小喷油压力取决于回油量孔和进油量孔的流量率及控制活塞的端面面积。

这样在确定了进油量孔、回油量孔和控制室的结构尺寸后,就确定了喷油嘴针阀完全开启的稳定、最短喷油过程,同时就确定了喷油嘴的稳定最小喷油量。

控制室容积的减少可以使针阀的响应速度更快,使燃油温度对喷油嘴喷油量的影响更小。

  但控制室的容积不可能无限制减少,它应能保证喷油嘴针阀的升程以使针阀完全开启。

两个控制量孔决定了控制室中的动态压力,从而决定了针阀的运动规律,通过仔细调节这两个量孔的流量系数,可以产生理想的喷油规律。

  由于高压共轨喷射系统的喷射压力非常高,因此其喷油嘴的喷孔截面积很小,如BOSCH公司的喷油嘴的喷孔直径为0.169mm×6,在如此小的喷孔直径和如此高的喷射压力下,燃油流动处于极端不稳定状态,油束的喷雾锥角变大,燃油雾化更好,但贯穿距离变小,因此应改变原柴油机进气的涡流强度、燃烧室结构形状以确保最佳的燃烧过程。

  对于喷油器电磁阀,由于共轨系统要求它有足够的开启速度,考虑到预喷射是改善柴油机性能的重要喷射方式,控制电磁阀的响应时间更应缩短。

  4、高压油管

  高压油管是连接共轨管和电控喷油器的通道,它应有足够的燃油流量减小燃油流动时的压降,并使高压管路系统中的压力波动较小,能承受高压燃油的冲击作用,且起动时共轨中的压力能很快建立。

各缸高压油管的长度应尽量相等,使柴油机每一个喷油器有相同的喷油压力,从而减少发动机各缸之间喷油量的偏差。

各高压油管应尽可能短,使从共轨到喷油嘴的压力损失最小。

BOSCH公司的高压油管的外经为6mm,内径为2.4mm,日本电装公司的高压油管的外经为8mm,内径为3mm。

  

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1