DEM建立与应用及基于DEM的ArcGIS水文分析.docx

上传人:b****6 文档编号:3325322 上传时间:2022-11-21 格式:DOCX 页数:51 大小:11.15MB
下载 相关 举报
DEM建立与应用及基于DEM的ArcGIS水文分析.docx_第1页
第1页 / 共51页
DEM建立与应用及基于DEM的ArcGIS水文分析.docx_第2页
第2页 / 共51页
DEM建立与应用及基于DEM的ArcGIS水文分析.docx_第3页
第3页 / 共51页
DEM建立与应用及基于DEM的ArcGIS水文分析.docx_第4页
第4页 / 共51页
DEM建立与应用及基于DEM的ArcGIS水文分析.docx_第5页
第5页 / 共51页
点击查看更多>>
下载资源
资源描述

DEM建立与应用及基于DEM的ArcGIS水文分析.docx

《DEM建立与应用及基于DEM的ArcGIS水文分析.docx》由会员分享,可在线阅读,更多相关《DEM建立与应用及基于DEM的ArcGIS水文分析.docx(51页珍藏版)》请在冰豆网上搜索。

DEM建立与应用及基于DEM的ArcGIS水文分析.docx

DEM建立与应用及基于DEM的ArcGIS水文分析

 

《地理信息系统ARCGIS》

结课实验报告

 

院系部:

专业班级:

学生姓名:

学号:

同组人:

实验台号:

指导教师:

成绩:

实验日期:

 

华北电力大学

年月日

 

DEM建立与应用及基于DEM的ArcGIS水文分析

一、实验目的

DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种数字方法、途径,它的应用可遍及整个地学领域。

通过对本次实习的学习,我们应:

a)加深对TIN建立过程的原理、方法的认识;

b)熟练掌握ArcGIS中建立DEM、TIN的技术方法。

c)掌握根据DEM或TIN计算坡度、坡向的方法。

d)结合实际,掌握应用DEM解决地学空间分析问题的能力。

水文分析:

根据DEM提取河流网络,进行河网分级,计算流水累积量、流向、水流长度、根据指定的流域面积大小自动划分流域。

通过本实验应达到以下目的:

①理解基于DEM数据进行水文分析的基本原理。

②掌握利用ArcGIS提供的水文分析工具进行水文分析的基本方法和步骤。

二、实验准备

软件准备:

ArcGISDesktop9.x---ArcMap

实验数据:

矢量图层:

高程文件terlkarc.lyr观测点文件point.lyr

三、实验内容及步骤

1、TIN及DEM的生成

1.1投影生成.shp文件

利用ArcToolbox\DataManagementtools\ProjectionsandTransformations\Feature\Project工具箱采用北京543°111E坐标系对terlkarc.lyr进行投影得到arc_Project.shp文件。

结果如图1(arc_Project)

1.2生成TIN格式文件

利用3DAnalyst工具栏下Create\ModifyTIN\CreateTINFromFeatures将arc_Project.shp转换为TIN格式文件tin.tin。

图2(tin)

1.3生成grid文件即DEM高程文件

利用3DAnalyst工具栏下Convert\TINtoRaster将tin.tin转换为GRID栅格文件tingrid.grid。

(栅格大小为125m)图3(tingrid)

2、DEM的应用(地形指标的提取)

2.1坡度

利用SpatialAnalyst\SurfaceAnalysis\Slope工具对tingrid文件进行坡度提取。

输出度量(outputmeasurement)选择度(degree)输出栅格大小与tingrid相同为125m。

图4(slope_tingrid)

2.2剖面曲率

利用SpatialAnalyst\SurfaceAnalysis\Slope工具对slope_tingrid文件进行处理,得到slope_slope即为高程图的剖面曲率的分布图。

图5(slope_slope)

同一局部的放大对比图图6

2.3坡向

利用SpatialAnalyst\SurfaceAnalysis\Aspect工具对tingrid文件进行坡向提取。

得到坡向栅格文件act_tingrid。

图7(act_tingrid)

2.4平面曲率

利用SpatialAnalyst\SurfaceAnalysis\Aspect工具对act_tingrid进行处理得到平面曲率的栅格文件aspect_asp。

图8(aspect_asp)

同一局部放大对比图图9

2.5提取等高线

利用利用SpatialAnalyst\SurfaceAnalysis\Contour工具对tingrid文件进行等高线提取。

得到等高线的矢量文件cont_tingrid.shp。

等高距(contourinterval)输入为100m,z轴放大倍数为1。

图10(cont_tingrid.shp)

局部放大图图11

在建立栅格文件tingrid时最小的栅格为125×125,而提取等高线时的等高距为100m,小于最小栅格的大小。

图中的锯齿就是因为这个原因产生的。

相同位置等高距为125m时的放大图

图12

2.6地形表面的阴影图

利用SpatialAnalyst\SurfaceAnalysis\Hillshade工具对tingrid文件进行处理。

可以生成地形表面阴影栅格。

方位角默认为315度,高度角为45度。

文件命名为hs_tingrid。

 

图13(hs_tingrid)

局部放大图图14

2.7可视性分析

2.7.1通视性分析

利用3DAnalyst工具栏中的CreateLineofSight按钮进行操作,并使用CreateProfileGraph获得通视线上的地形剖面图。

图15通视线图

画框那条通视线上的地形剖面图

图16视线上的地形剖面图

2.7.2可视区分析

首先利用散点文件point.lyr投影建立一个观测点的图层(point_1.shp文件)。

再利用SpatialAnalyst\SurfaceAnalysis\Viewshed工具对tingrid文件和point_1.shp文件进行处理.得到可视区的栅格文件view_point。

 

图17(view_point)

局部放大图图18

2.8地形剖面

利用3DAnalyst工具栏中的InterpolateLine按钮进行操作。

在tingrid(或者tin)上跟踪出一条曲线,并使用CreateProfileGraph获得跟踪线上的地形剖面图。

 

图19

3、基于DEM的水文分析

水文分析是DEM数据应用的一个重要方面。

利用DEM生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。

表面水文分析模型研究与地表水流有关的各种自然现象例如洪水水位及泛滥情况,划定受污染源影响的地区,预测当某一地区的地貌改变时对整个地区将造成的影响等。

基于DEM地表水文分析的主要内容是利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。

通过对这些基本水文因子的提取和分析,可再现水流的流动过程,最终完成水文分析过程。

在ArcGIS中水文分析有一个独立的工具箱就是ArcToolbox下SpatialAnalystTools中的Hydrology工具箱,基于DEM的水文分析的主要工具都在这个工具箱中。

3.1无洼地的DEM生成

3.1.1未填洼的水流方向的提取

利用ArcToolbox\SpatialAnalysisTools\Hydrology\FlowDirectiongon工具箱对tingrid进行处理得到未填洼的水流方向文件wFD_tingrid,若从DEM中作出来的流向分析的最大数值为128则不需要填洼,否则需要填挖。

图20(wFD_tingrid)

最大值为255不符合要求,需要填洼。

3.1.2洼地的计算

利用ArcToolbox\SpatialAnalysisTools\Hydrology\Sink工具箱对tingrid进行处理,可以看出由于DEM插值或其他原因造成的高程“洼地”。

得到sink_wFD_tin文件。

图21(sink_wFD_tin)

3.1.3洼地填充

利用ArcToolbox\SpatialAnalysisTools\Hydrology\Fill工具箱对tingrid进行处理,Zlimit为默认,即所有洼地都要填充。

得到填洼后的表面光滑的DEM文件Fill_tingrid。

图22(Fill_tingrid)

Fill_tingrid与tingrid局部放大对比图图23

3.1.4无洼地的流向分析

利用ArcToolbox\SpatialAnalysisTools\Hydrology\FlowDirectiongon工具箱对Fill_tingrid

进行处理,得到无洼地的水流方向的栅格文件FlowDir_Fill。

图24(FlowDir_Fill)

3.2汇流累积量的计算

利用ArcToolbox\SpatialAnalysisTools\Hydrology\FlowAccumulation工具箱对FlowDir_Fill进行处理。

得到回流积累量文件FlowAcc_Flow。

图25(FlowAcc_Flow)

3.3计算水流长度(流程)

利用ArcToolbox\SpatialAnalysisTools\Hydrology\FlowLength工具箱对FlowDir_Fill进行处理,采用Downstream(顺流计算),权重值默认。

得到顺流而下的水流长度的栅格文件FlowLen_Flow。

 

图26(FlowLen_Flow)

3.4提取河流网络

3.4.1河流网络栅格数据的提取

可以利用ArcToolbox\SpatialAnalystTools\MapAlgebra\SingleOutputMapAlgebra工具对FlowAcc_Flow文件进行处理。

在“地图代数表达式”(MapAlgebraexpression)中输入公式:

con(E:

\1\FlowAcc_Flow>800,1),输出栅格(outputraster)命名为:

StreamNet。

还可以利用ArcMap中SpatialAnalyst\RasterCalculator(栅格计算器)在计算器中输入表达式:

con([FlowAcc_Flow]>800,1)。

图27(StreamNet)

3.4.2栅格河流网络的矢量化

3.4.2.1矢量化河流网络的提取

利用ArcToolbox\SpatialAnalystTools\Hydrology\streamtofeature工具箱对streamnet文件进行处理,在[Inputstreamraster]中选中streamnet,在[Inputflowdirectionraster]中选中FlowDir_Fill文件,在[Outputploylinefeatures]中输出文件名为StreamT_streamN。

图28(StreamT_streamN.shp)

3.4.2.2平滑处理河流网络

利用Editor工具栏对StreamT_streamN.shp进行编辑,单击Editor下拉菜单,单击StaringEditor激活编辑工具栏,在下拉菜单中选中MoreEditingTools\AdvancedEditing,选中整幅地图,在弹出的AdvancedEditing工具栏中点击平滑(Smooth)按钮

,在弹出的Smooth对话框中[Maximumallowableoffset]栏中中输入值“3”,表示允许最大偏移量为3。

从而得到平滑处理后的河流网络。

图29(StreamT_streamN.shp)

用这种方法所平滑的流域河流网络偏移量较大,可能会产生人为误差,也可利用DataManagementTools工具箱下DataManagementTools\Generalization\SmoothLine工具箱对河流网络进行平滑处理。

此种方法偏移较小。

图30(StreamT_streamN_SmoothLine)

局部放大对比图

图31

平滑处理前

平滑处理后

StreamT_streamN_SmoothLine

平滑前与Smooth处理图层的叠加效果

图32

3.5河网分级

利用ArcToolbox\SpatialAnalystTools\Hydrology\StreamOrder工具箱,在[Inputstreamraster]选中streamnet,在[Inputflowdirectionraster]中选中FlowDir_Fill文件,河网分级有两种方Strahler分级和Shreve分级。

当使用Strahler时在[Outputploylinefeatures]输出地文件名为:

StreamO_stre

;当使用Shreve分级法时[Outputploylinefeatures]输出地文件名为:

StreamO_shre。

图33

3.6流域提取

3.6.1流域盆地(大流域)的提取

利用ArcToolbox\SpatialAnalystTools\Hydrology\Basin工具箱对FlowDir_Fill进行处理,得到流域盆地的栅格文件Basin_flow。

图34(Basin_flow)

对Basin_flow栅格文件进行矢量化,利用ArcToolbox\ConvertionTools\FromRaster\RastertoPolygon对Basin_flow进行处理,将栅格文件转换为多边形的行文件RasterT_Basin_f.shp。

图35(RasterT_Basin_f.shp)

3.6.2子流域的提取

利用ArcToolbox\SpatialAnalystTools\MapAlgebra\SingleOutputMapAlgebra工具对FlowAcc_Flow文件进行处理。

在“地图代数表达式”(MapAlgebraexpression)中输入公式:

con(E:

\1\FlowAcc_Flow>20000,1),输出栅格(outputraster)命名为:

StreamNet2。

“20000”这个值是由提取流域网栅格数据时,为了提取了河流主要干流,除去不必要的小级别小支流而不断试验得到的阈值。

由于没有流域汇流出口的流量数据,所以只能做大概的估计。

精度很差。

也可取“14000~16000”,此时所得集水域的子流域面积比较均匀。

下面有取“15000”时的集水域图。

图36(StreamNet2)

3.6.3StreamLink的生成

通过提取Streamlink可以得到每一个河网弧段的起始点和终止点。

同样,也可以得到该汇水区域的出水点。

由于没有出水点的栅格或矢量数据,而streamlink数据中隐含着河网中每一条河网弧段的联结信息,包括弧段的起点和终点等,相对而言,弧段的终点就是该汇水区域的出水口所在位置。

所以可以用生成的streamlink数据作为汇水区的出水口数据。

利用ArcToolbox\SpatialAnalystTools\Hydrology\Streamlink工具箱,在[InputStreamRaster]中选中StreamNet2,在[Inputfilldirectionraster]中选中FlowDir_Fill(无洼地水流方向的栅格文件),输出文件名为StreamL_stre1。

图37(StreamL_stre1)

3.6.4集水域(Watershed)的生成

利用ArcToolbox\SpatialAnalystTools\Hydrology\Watershed工具箱对无洼地的水流方向数据文件FlowDir_Fill和汇水区出水口数据文件StreamL_stre1进行处理。

在[Inputdirectionraster]中选中FlowDir_Fill,在[Inputrasterorfeaturepourpointdata]中选中StreamL_stre1,输出集水域栅格文件名为Watersh_flow1。

图38(Watersh_flow1)

加入矢量化河流网络图层的效果图(由于Editing平滑处理的河网视觉效果较好,此处取该河网图层)

图39栅格图

矢量图

图40con(E:

\1\FlowAcc_Flow>15000,1)集水域栅格图

图41con(E:

\1\FlowAcc_Flow>15000,1)集水域矢量图

图42con(E:

\1\FlowAcc_Flow>3000,1)集水域栅格图

图43con(E:

\1\FlowAcc_Flow>3000,1)集水域矢量图

图44con(E:

\1\FlowAcc_Flow>800,1)集水域栅格图

图45con(E:

\1\FlowAcc_Flow>800,1)集水域矢量图

图46子流域提取矢量图1

取con(E:

\1\FlowAcc_Flow>15000,1)+con(E:

\1\FlowAcc_Flow>3000,1)+con(E:

\1\FlowAcc_Flow>800,1)+RasterT_Basin_f+Editing平滑处理的河网等图层叠加而成。

图47子流域提取矢量图2

取con(E:

\1\FlowAcc_Flow>15000,1)+con(E:

\1\FlowAcc_Flow>3000,1)+con(E:

\1\FlowAcc_Flow>800,1)+RasterT_Basin_f+Smooth平滑处理的河网等图层叠加而成

附录

前述全屏截图的局部清晰图

图1(arc_Project)

图2(tin)

图3(tingrid)

图4(slope_tingrid)

图5(slope_slope)

图7(act_tingrid)

图8(aspect_asp)

图13(hs_tingrid)

图22(Fill_tingrid)

图24(FlowDir_Fill)

图25(FlowAcc_Flow)

图34(Basin_flow)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1