迎接21世纪现代林木生物技术育种的挑战.docx
《迎接21世纪现代林木生物技术育种的挑战.docx》由会员分享,可在线阅读,更多相关《迎接21世纪现代林木生物技术育种的挑战.docx(8页珍藏版)》请在冰豆网上搜索。
迎接21世纪现代林木生物技术育种的挑战
迎接21世纪现代林木生物技术育种的挑战
施季森
南京林业大学
摘 要:
林木组织培养及其工厂化育苗技术,细胞工程种苗工厂化生产新技术,林木体细胞胚胎发生、植株再生和人工种子技术,林木原生质体培养和细胞杂交,体细胞突变体的筛选与利用和林木基因工程育种等是林业面向21世纪的新型产业关键技术。
21世纪我国林业生物技术育种,要充分重视拥有自主知识产权的林木基因和基因工程品种培育,同时林木基因工程应从单基因生物抗性转向持久抗性,生物抗性转向非生物因子抗性;要重视优良基因型的体细胞胚胎发生工程的实用化和自动化研究、常规育种技术与现代生物技术的有机结合,林木转基因植株的环境安全性评估问题也应予以重视。
关键词:
生物技术;组织培养;细胞工程;基因工程;环境安全
一、传统生物技术正在向现代生物技术转变
传统生物技术(或称生物工程学,Biotechnology)的原始应用虽可以追溯久远,但现代生物技术主要是指近20~30年以来,生命科学领域内微生物学、遗传学、生物化学、细胞生物学和分子生物学在理论和方法、乃至计算机和信息学的技术革命,从而形成的现代高技术,主要包括基因工程、细胞工程、酶工程、发酵工程和生化工程。
林业生物工程技术的应用,特别是在应用生物工程技术进行林木新品种的培育和改良、林产工业生产中的环境污染的生物技术净化、木质生物原料生物工程技术加工和能源转化等方面都具有十分广阔的前景。
生物技术作为20世纪人类科技事业最伟大的成就之一,不仅正在推动着世界经济和社会的发展,也对整个国际科技战略发展格局产生着深远的影响。
因此,许多国家把发展生物技术作为重要国策,以期在国际竞争中长期占据有利地位。
世界许多著名的企业都纷纷注入巨资投资生物技术产业。
据不完全估计,到2000年世界生物技术市场约为4000亿美元,21世纪世界农产品的产量增长89%~90%将主要来自生物工程技术;2020年70%的农作物品种将是基因工程品种。
农业、林业、环保和海洋生物技术将成为继医药生物技术浪潮之后的第二浪潮,我们必须清晰地意识到中国的林木育种业也如同其他生命科学领域一样,面临21世纪从传统生物技术向现代生物技术转变和迅猛发展的挑战。
现代生物技术在林木遗传育种中的应用,主要涉及细胞工程、基因工程及其相关的前沿领域。
二、国内外林木生物技术育种的现状与进展
(一)林木组织培养及其工厂化育苗技术
自20世纪60年代以来利用组织培养再生植株的植物种类已达到近1000种,其中木本植物达200多种,并且在不断增加。
美国1978年已开始用火炬松优树的组培苗进行小面积造林,1983年其里格斯苗圃就有100万株组培苗的生产规模;新西兰林业研究中心用组培方法生产优质辐射松苗,目前达200万株左右;另外,德国、法国、加拿大和巴西等在三倍体山杨、云杉、杨树、桉树等树种的组培方面进行了较为系统的研究,使林木组织培养苗木进入工厂化和实用化阶段。
20世纪70年代以来,我国开展了这方面的研究。
先后分别有杨属、杉木、马尾松、泡桐、桉树、落叶松、火炬松、湿地松、马褂木、柚木、竹子和桑树等树种从器官、茎尖、成熟胚、花药和愈伤组织诱导成苗。
自1983年国家实施“六五”林业科技攻关计划以来,我国的林木组培育苗研究已从实验室走向工厂化大生产,分别在华南和华北地区建立了具有国际先进水平的,年产桉树组培苗250万株、杨树组培苗150万株的全自动控制育苗工厂。
与此同时,一些地方性的林业生物技术产业也有很好的发展,生产的组培苗木被广泛应用于国家林业两大体系的建设和世界银行贷款造林项目的实施,尤其在南方商品林如桉树商品林基地建设中起了十分重要的作用。
在林木组织培养技术的基础上,发展出的一系列基因转移、DNA直接导入技术成为基因工程的核心技术,组织培养也成为生物技术的重要组成部分。
(二)细胞工程种苗工厂化生产新技术
1.林木体细胞胚胎发生、植株再生和人工种子技术
体细胞胚胎发生和植株再生以及人工种子技术的思想,主要来源于1902年Haberlandt提出的植物细胞的全能性理论。
由于植物每一个体细胞从理论上都存在诱导成胚的可能性,具有繁殖速度快、不受地区、季节和气候性灾害等自然条件的限制;对于木本植物来说,不必等待漫长的有性时代,一旦获得优良材料就可以比常规繁殖快数十倍甚至上百倍的速度繁殖,因此具有十分诱人的潜力。
林木的体细胞胚胎发生始于20世纪70年代后期,90年代初得到迅速的发展,并获得了极大的成功。
全世界目前已有40多种木本植物获得了体细胞胚,尤其是用常规无性繁殖技术很难生根的针叶树的体胚发生取得了令人瞩目的进展。
据初步统计,已从冷杉属、落叶松属、云杉属、松属、黄杉属和北美红杉属的至少20种不同的针叶树的外植体诱导成功了体细胞胚。
在阔叶树种上,杨属、柳属、栗属、檀香属、枫香属、鹅掌楸属、榛属、栎属、板栗属、刺槐属、山茶属、桉树属、七叶树属、柑橘属、柚木、油棕、可可、油橄榄、橡胶、泡桐等20多个树种的组织培养中观察到体细胞胚胎发生或获得再生植株。
其中,美国的惠豪公司、国际纸业公司、维斯瓦库公司和加拿大的一些公司、新西兰林业研究中心等已分别将火炬松、挪威云杉、花旗松和辐射松等树种的体细胞胚诱导和植株再生应用于生产实践。
仅新西兰一家公司就已形成了年产200万株辐射松体细胞胚再生植株的能力。
我国目前林木体细胞胚胎发生和植株再生技术研究,见报道的有中国科学院遗传所、中国科学院上海植物生理研究所和中国科学院植物所等单位,涉及的树种有云杉属火炬松、马尾松、黑穗醋栗、桉树、桃树等树种等,南京林业大学等单位正在进行枫香、鹅掌楸、杉木和马尾松等树种体细胞胚胎发生和植株再生技术研究。
人工种子的研究进展相对缓慢一些。
研究进展受到两个方面的影响,一是体细胞胚胎形成后可以直接诱导再生成苗,而不一定要走人工种子的技术路线;二是制备人工种子的包裹材料及附加成分组成人工胚乳和人工种衣的技术尚未成熟,人工种子的转株率低。
国内木本植物目前仅见贡柑和赤桉的报道,转株率分别达到30%~70%和80%~90%。
据加拿大有关学者认为,在人工种衣技术成熟以前,可以采用体细胞胚胎培养与直接诱导成苗技术相结合的技术路线,应用于林业生产实践,体胚的转株率较高,成本较合理。
1个10~15cm直径的培养皿内可诱导出上千个胚和近千株苗木,完全可以满足1hm2造林用苗,可见成熟的体细胞胚胎发生和诱导成苗技术的种苗繁殖效率是相当高的。
2.林木原生质体培养、细胞杂交和体细胞突变体的筛选与利用
林木植物的细胞具有细胞壁,不能直接进行细胞融合而获得细胞杂种。
自1960年英国的Cocking首次用纤维素酶从番茄根分离得到原生质体后,开创了林木原生质体分离、培养和细胞杂交的新时期。
目前有320多种高等植物的原生质体培养再生植株成功,但在木本植物方面起步较晚,难度较大,进展不快。
到目前为止,世界上木本植物仅见五种橙子、三种柑子、苹果、枇杷、桑树、欧洲山杨及其它杨属树种、榆树、悬铃木、泡桐和猕猴桃等树种报道,其中用材树种仅有六种。
南京林业大学与中国科学院上海植物生理研究所合作,先后获得了杨树、桑树、泡桐和悬铃木等用材树种的原生质体;最近,南京林业大学报道成功地进行了美洲黑杨与小叶杨原生质体分离、培养,美洲黑杨与胡杨、美洲黑杨与青杨的原生质体融合和细胞杂交研究,为林木远缘杂交和新品种培育展示了广阔的前景。
组织培养过程中,离体组织和细胞在一定的诱导条件下,可产生远高于自然突变的体细胞突变频率,为林木的遗传改良提供了重要的选择来源。
国内外研究人员利用体细胞无性系变异体、突变体进行林木抗病、抗除草剂、抗盐碱和提高次生代谢物含量的筛选研究。
先后筛选出了杨树抗病、抗除草剂新无性系,抗北美五针松疱锈病新无性系。
中国林科院和南京林业大学进行了耐盐体细胞突变体筛选的研究,获得了一批体细胞变异体。
(三)林木基因工程育种是林业面向21世纪的新型产业
在林业生物技术中,上述的组织培养、体细胞胚胎发生和单纯的原生质体培养植株再生技术基本上是属于利用现有的遗传资源,加以快速繁殖利用,而在这些技术的基础上发展起来的各种将外源基因导入林木细胞的遗传转化技术,为林木育种工作者创造了新的遗传变异和育种资源,使林木育种真正深入到生物技术育种的水平,为发展面向21世纪的林业产业提供了技术基础。
1.林木遗传转化
遗传转化技术是将动物、微生物和植物本身的基因,通过遗传转化方法将异源基因导入树木,并使得这些基因在合适的调控顺序下在异源植物的细胞中表达。
以农杆菌Ti质粒和Ri质粒经改建后作为载体的遗传转化系统,成功地转化了大多数试验过的双子叶植物和裸子植物。
遗传转化的方法已从最初的农杆菌介导法发展了多种DNA直接转化法,如原生质体电激穿孔法、PEG法和微注射法、基因枪技术以及最新发展起来的低能等离子束法等。
成功进行遗传转化的树种分别有杨属、落叶松属、云杉属、松属、栗属、胡桃、刺槐、桤木、桉树、苹果、李和葡萄等20多个树种。
利用DNA直接转化导入异源基因时,可能插入核基因组,也可能插入细胞质基因组,因而基因的表达存在不确定性。
而农杆菌介导的基因转移通常只能插入核基因组之中,因此目前报道成功的转基因植物近80%是采用农杆菌介导的遗传转化。
我国的科学家在“七五”、“八五”和“九五”攻关期间,成功地进行了杨树、松树和桉树等树种的遗传转化,系统掌握了各种遗传转化技术体系,为开展转基因工程的实际应用奠定了基础。
2.林木基因工程
林木基因工程是通过适合的基因转移技术,导入有用的外源基因,获得转基因植株,进行林木遗传改良或有关的研究。
1986~1997年期间,全世界有45个国家在60多种植物上进行了25000例转基因植物的田间试验,仅1996~1997年即约有10000例左右的报道,约占40%。
1997年底,全球已有12种作物的48种转基因作物产品获准进入商品化生产,转基因植物种植面积达1280万hm2,仅美国就占60%。
据估计全球转基因植物产品的市场销售额从1996年的不足5亿美元,到2000年将增加到70亿~100亿美元。
可见转基因工程是目前国际竞争最激烈的生命科学领域之一。
世界上林木的基因工程主要集中在抗病基因工程、抗虫基因工程、抗除草剂基因工程、抗逆基因工程、品质改良基因工程等方面。
(1)抗病基因工程 迄今为止,植物抗病基因工程大多也是依据农杆菌Ti质粒为载体的随机整合策略。
树木的抗病基因工程根据树木感染的是病毒、细菌或真菌病害不同而采取不同的策略。
抗病毒病害基因工程所选用的目的基因,主要有卫星RNA,外壳蛋白基因、反义RNA、PR蛋白基因、中和抗体基因、弱毒株系、干扰素基因等;抗真菌性病害的目的基因来自植物内、外源的病原菌的颉抗蛋白和毒蛋白基因,病原菌特异激发子的编码基因,病菌蛋白酶抑制剂基因以及病原和寄主中过敏反应的控制基因等。
细菌性的病害的基因工程主要采取对病原细菌有解毒作用的解毒活性基因和T4溶菌酶基因等方法。
抗林木病毒性病害的基因尚未很好研究和克隆,抗真菌性和细菌性的基因研究有一定的进展。
抗真菌性的病害研究方面目前克隆出的基因有几丁质酶基因和角质酶基因,已构建了能在杨树细胞中表达的几丁质酶基因的表达系统;诱导或激发树木本身防卫系统启动,涉及木质素、黄酮类色素和植保素的合成的酶类基因如苯丙氨酸胺裂解酶、查尔酮合成酶、水杨酸合成酶基因,微生物源、动物(如昆虫、兔防御素基因)异源、植物异源次生代谢物合成基因的研究等研究对林木抗病基因工程具有重要意义。
目前国内外转基因的抗杨树叶锈病、抗杨树叶枯病、抗日本山杨肿瘤病、抗栗疫病、南方松梭形锈病、抗桉树青枯病等转基因的转基因树木正在试验中。
(2)抗虫基因工程 1988年美国依阿华大学首先利用从马铃薯中提取的蛋白抑制剂基因,以农杆菌Ti质粒为载体转化杨树杂种无性系,获得抗卡那霉素植株;1990年我国的南京林业大学将农杆菌C58菌株转入小叶杨和欧美杨,将农杆菌Ri质粒系统