主成分分析SPSS操作步骤.docx

上传人:b****0 文档编号:321500 上传时间:2022-10-08 格式:DOCX 页数:11 大小:579.78KB
下载 相关 举报
主成分分析SPSS操作步骤.docx_第1页
第1页 / 共11页
主成分分析SPSS操作步骤.docx_第2页
第2页 / 共11页
主成分分析SPSS操作步骤.docx_第3页
第3页 / 共11页
主成分分析SPSS操作步骤.docx_第4页
第4页 / 共11页
主成分分析SPSS操作步骤.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

主成分分析SPSS操作步骤.docx

《主成分分析SPSS操作步骤.docx》由会员分享,可在线阅读,更多相关《主成分分析SPSS操作步骤.docx(11页珍藏版)》请在冰豆网上搜索。

主成分分析SPSS操作步骤.docx

主成分分析SPSS操作步骤

打开第二个的“抽取”对话框:

“方法”里选取“主成分”;“分析”、“输出”和“抽取”这三项都选中各自的第一个选项即可。

然后点击“继续”。

 

第三个的“旋转”对话框里,选取默认的也是第一个选项“无”。

 

第四个“得分”对话框中,选中“保存为变量”的“回归”;以及“显示因子得分系数矩阵”。

第五个“选项”对话框,默认即可。

这时点击“确定”,进行主成分分析。

 

三.分析结果的解读

按照SPSS输出结果的先后顺序逐个介绍

1.相关系数矩阵:

是6个变量两两之间相关系数大小的方阵。

 

2.共同度:

给出了这次主成分分析从原始变量中提取的信息,可以看出交通和通讯最多,而娱乐教育文化损失率最大。

Communalities

Initial

Extraction

食品

1.000

.878

衣着

1.000

.825

燃料

1.000

.841

住房

1.000

.810

交通和通讯

1.000

.919

娱乐教育文化

1.000

.584

3.总方差的解释:

系统默认方差大于1的为主成分,所以只取前两个,前两个主成分累加占到总方差的80.939%。

并且第一主成分的方差是3.568,第二主成分的方差是1.288。

TotalVarianceExplained

Component

InitialEigenvalues

ExtractionSumsofSquaredLoadings

Total

%ofVariance

Cumulative%

Total

%ofVariance

Cumulative%

1

3.568

59.474

59.474

3.568

59.474

59.474

2

1.288

21.466

80.939

1.288

21.466

80.939

3

.600

10.001

90.941

4

.359

5.975

96.916

5

.142

2.372

99.288

6

.043

.712

100.000

ExtractionMethod:

PrincipalComponentAnalysis.

4.主成分载荷矩阵:

ComponentMatrixa

Component

1

2

交通和通讯

.925

-.252

食品

.902

.255

衣着

.880

-.224

住房

.878

-.195

娱乐教育文化

.588

.488

燃料

.093

.912

应该特别注意:

这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:

各自主成分载荷向量除以各自主成分特征值的算术平方根。

那么第1主成分的各个系数是向量(0.925,0.902,0.880,0.878,0.588,0.093)除以

后得到,即(0.490,0.478,0.466,0.465,0.311,0.049)(这才是主成分1的特征向量,满足条件:

系数的平方和等于1),分别乘以6个原始变量标准化之后的变量即为第1主成分的函数表达式:

同理可以求出第2主成分的函数表达式。

(同学们自己求解!

5.主成分得分系数矩阵

ComponentScoreCoefficientMatrix

Component

1

2

食品

.253

.198

衣着

.247

-.174

燃料

.026

.708

住房

.246

-.152

交通和通讯

.259

-.196

娱乐教育文化

.165

.379

该矩阵是主成分载荷矩阵除以各自的方差得来的,实际上是因子分析中各个因子的系数,在主成分分析中可以不考虑它。

6.因子得分

在步骤二中,第四个“得分”对话框中,我们选中“保存为变量”的“回归”;以及“显示因子得分系数矩阵”。

SPSS的输出结果和原始数据一起显示在数据窗口里面:

特别提醒:

后两列的数据是北京等16个地区的因子1和因子2的得分,不是主成分1和主成分2的得分。

主成分的得分是相应的因子得分乘以相应的方差的算术平方根。

即:

主成分1得分=因子1得分乘以3.568的算术平方根

主成分2得分=因子2得分乘以1.288的算术平方根

 

四.主成分的得分:

把因子1和因子2的数值分别乘以各自的方差的算术平方根,得出各地区主成分1和主成分2的得分。

后两列就是这16个地区主成分1和主成分2的得分。

(有兴趣的同学可以验证一下:

由步骤3.4推导出来的主成分的函数关系式计算出来的主成分得分是否与该数据栏的得分一致?

五.综合得分及排序:

每个地区的综合得分是按照下列公式计算的:

,化简得:

按照此公式计算出各地区的综合得分Y为:

 

按照综合得分Y的大小进行16个地区的排序,结果如下:

特别提醒:

1.如果主成分分析中有n个变量,则特征值(或方差)之和就等于n。

2.特征向量(或主成分的系数)中各个数值的平方和等于1,否则就不是特征向量,也不是主成分系数。

3.步骤3.4中的主成分载荷向量各系数的平方和等于其对应的主成分的方差。

在本例中:

4.SPSS没有专门的主成分分析模块,是在因子分析模块进行的。

它只输出主成分载荷矩阵和因子得分值,而我们最想得到的主成分的系数(特征向量)和主成分得分则需要另外计算。

5.如果计算没有错误,因子1、因子2、主成分1、主成分2和综合得分Y,它们各自的数值之和都等于0。

6.主成分分析应该计算出综合得分并排序。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 营销活动策划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1