掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx

上传人:b****4 文档编号:3143552 上传时间:2022-11-18 格式:DOCX 页数:22 大小:117.53KB
下载 相关 举报
掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx_第1页
第1页 / 共22页
掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx_第2页
第2页 / 共22页
掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx_第3页
第3页 / 共22页
掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx_第4页
第4页 / 共22页
掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx

《掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx》由会员分享,可在线阅读,更多相关《掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx(22页珍藏版)》请在冰豆网上搜索。

掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文.docx

掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文

掺铁二氧化钛的制备及其对罗丹明B的降解毕业论文

摘要I

AbstractII

1绪论1

1.1引言1

1.2纳米TiO2光催化机理1

1.3纳米TiO2的改性方法2

1.4纳米TiO2的发展概况3

1.5纳米TiO2光催化氧化技术的研究现状及应用前景4

1.6本课题研究的目的和意义5

2纯TiO2和掺铁TiO2的制备7

2.1实验原理7

2.2主要实验设备和药品7

2.3二氧化钛和掺铁二氧化钛的制备过程8

2.4正交实验确定制备TiO2各药品配比8

2.5正交实验确定制备Fe-TiO2最佳条件10

2.6Fe-TiO2光催化剂制备条件的影响12

2.6.1锻烧温度的影响12

2.6.2锻烧时间的影响13

2.6.3掺铁量W(Fe3+/TiO2)的影响14

2.7小结15

3光催化实验及其影响因素16

3.1光催化机理16

3.2光催化降解实验17

3.2.1实验方法17

3.2.2分析方法18

3.3处理溶液pH的影响19

3.4光催化时间影响20

3.5小结21

结论22

参考文献23

致谢25

1绪论

1.1引言

二氧化钛,化学式为TiO2,俗称钛白粉,英文:

Titanium(IV)oxide。

多用于光触媒、化妆品,能靠紫外线消毒及杀菌,白色固体或粉末状的两性氧化物,易结合在一起。

分子量79.87,市场销售的纯度为≥99.0%。

二氧化钛的熔点1830~1850℃,沸点2500~3000℃。

自然界存在的二氧化钛有三种变体:

金红石为四方晶体;锐钛矿为四方晶体;板钛矿为正交晶体。

二氧化钛在水中的溶解度很小,但可溶于酸,也可溶于碱。

二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。

二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。

二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。

1.2纳米TiO2光催化机理

实验证明:

二氧化钛晶体有三种结构:

锐钛矿型、金红石型、板钛矿型,其中锐钛矿型TiO2具有较好光催化作用,属N型半导体。

N型半导体吸收了能量大于或等于禁带宽度的光子后,价带上电子跃过价带进入导带。

价带上则形成光致空穴。

对于锐钛矿型TiO2,其带隙能为3.2eV,相当于387nm光。

TiO2+hv→h++e-(1.1)

e-—导带上的光致电子

h+—代表TiO2光致空穴

h+具有很强的捕获电子能力,具有极强的氧化性;e-具有很强的还原性,在半导体表面形成很强的氧化还原体系,在水溶液中时产生以下反应[1]:

h++H2O——H++•OH(1.2)

O2+2e-+2H+——H2O2(1.3)

H2O2+·O2-——•OH+OH-+O2(1.4)

h++OH-——•OH(1.5)

•OH不稳定,具有很高活性,氧化能力比H2O2,O3强,能氧化难降解有机物,将有机物的C、H、S分别氧化成CO2、H2O、SO42-。

1.3纳米TiO2的改性方法

TiO2催化剂由于禁带较宽[2](E=3.2eV),只能被波长小于或等于387nm的近紫外部分所激发,这部分光只占太阳光的一小部分(仅为4%),不能充分利用太阳光。

另外,光生载流子(e-、h+)容易复合,在催化剂的表面的复合是在小于10~9秒的时间完成。

因此,如何减少光生载流子(e-、h+)的复合几率、扩展TiO2催化剂的光响应围至可见光区,提高对太阳能的利用效率的有效途径是对TiO2催化剂表面进行修饰。

如金属离子掺杂、贵金属的沉积、复合半导体、表面敏化等。

(1)金属离子

过渡金氧化物掺杂可以在TiO2晶格中引入了缺陷位置或改变结晶度,抑制电子空穴对的复合,延长载流子的寿命。

过渡金属的变价以及3d轨道对TiO2半导体的光电化学性质有很大的影响,同时某些金属离子的掺杂还可以扩展光吸收围,所以过渡金属离子的掺杂改性是提高光催化活性的一个有效方法。

大量的研究表明:

掺入过渡金属离子可改善TiO2的光催化性能。

稀土因为其特殊的电子层结构,具有一般元素无法比拟的光谱特性,具有未充满的4f壳层的稀土原子或离子形成的化合物的4f电子可以在f-f组态之间或f-d组态之间的发生跃迁。

(2)沉积贵金属[3-4]

在二氧化钛中引入贵金属粒子可以对半导体进行改性。

因为贵金属沉积在催化剂表面时,光激发产生的电子e-立即转移到贵金属上,随后将贵金属表面吸附的氧化组分如O2还原,还原组分则被表面的光生空穴h+氧化,从而有效的减少了光生载流(e-、h+)复合,提高光催化活性。

常见的贵金属有Pt、Pd、Au、Ag、Ru等。

已有多种方法对沉积了贵金属的半导体进行表征,并探讨了沉积的作用机理。

(3)复合半导体

复合半导体是由两种不同的半导体复合而成,由于半导体禁带宽不同,复合半导体可以扩展波长的响应围,提高电荷的分离能力,从而具有比单一半导体更加优越的性质。

将窄禁带的半导体CdS引入到宽禁带的半导体TiO2中构成复合半导体,使TiO2光催化剂的光谱响应获得了显著改善。

将ZnO与TiO2复合,尽管ZnO和TiO2有同等的禁带宽度,但因复合半导体的能带交迭而使其光谱响应也得到了显著改善。

较为常用的复合方法为浸渍法和混合溶胶法。

(4)表面光敏化

光敏化是指将具有光活性化合物(多为有机光敏材料)以物理或化学吸附于半导体表面,这些物质在可见光的照射下,电子被激发后注入到半导体的导带上。

从而加宽了TiO2的吸收波长,有效扩展了TiO2在可见光区的光谱响应。

Ozer等研究过过羟丙基纤维素(HPC)和镍钛菁(NiPC)共饰的电极光谱响应,发现其光电流作用谱图不同于单纯的TiO2和NiPC的吸收光谱,在550nm处出现一个极大的响应峰。

1.4纳米TiO2的发展概况

自从1997年FrankS.N.等[5]在光催化降解水中污染物方面做了开拓性的工作并提出将半导体微粒的悬浮体系应用于处理工业污水以来,光催化研究日益活跃。

二十几年来,人们对光催化机理研究做了大量探讨,弄清楚了半导体光催化剂的作用原理,在材料选择及制备方面也经历了由盲目性到目标明确、由简单到复杂、由单一到复合的过程。

FrankS.N.等提出将半导体微粒的悬浮体系应用于处理工业污水以后,二氧化钛光催化研究大体经历了如下几个阶段:

首先是1997年FrankS.N.与其合作者等选定了利用TiO2、SnO2、WO3、ZrO2、ZnO、CdS等单一半导体化合物做光催化剂,发现这些半导体微粒在紫外波段具有一定的光催化特性。

而二氧化钛因其稳定性好、成本低、光催化活性强、对人体无害等性质而最具应用前景。

于是科技工作者围绕二氧化钛的光催化特性研究展开了大量的实验。

但具有光催化特性的n-TiO2是一种禁带宽度为3.2eV的宽禁带半导体,其光催化特性仅限于紫外波段,而太阳光主要分布在0.25~2.5μm围,在这个波段紫外光仅占2%左右,因而二氧化钛直接利用太阳光进行光催化分解的效率较低。

其二是将二氧化钛与其它半导体化合物复合,形成复合型半导体,以改变其光谱响应。

VogelR等将窄禁带的半导体CdS引入宽禁带半导体二氧化钛形成复合半导体光催化剂。

由于两种半导体的导带、价带、禁带宽度不一致而发生交迭,从而提高晶体的电荷分离率,扩展二氧化钛的光谱响应。

二氧化钛禁带宽度相等的半导体ZnO(E=3.2eV)引入与二氧化钛复合。

因复合半导体的能带交迭而使其光谱响应得到显著改善。

对TiO2/Al2O3,TiO2/SiO2,TiO2/SnO2,TiO2/WO3等的复合做了系统研究。

这种二氧化钛的复合半导体的光谱响应围可扩展至可见光波段,催化活性更高。

其三是掺杂金属改性。

利用杂质离子来改变半导体中电子和空穴的浓度。

在光照作用下,因掺杂引起的电子跃迁的能量要小于禁带宽度Eg,而且掺杂电子浓度较大故其光谱响应向可见光方向移动。

Cho等系统的研究了过渡金属掺杂二氧化钛的光催化特性,并对其掺杂改性机理做了探讨,认为光化波段扩展主要归因于杂质在能级结构中形成的亚能级,亚能级的形成使得光激发需要的能量小于Eg,从而引起吸收边的红移。

利用重金属沉积法在二氧化钛表面沉积Pt、Au、Ru、Pd等重金属,可以大大提高二氧化钛的光催化活性。

岳林海等利用稀土元素在二氧化钛中进行掺杂改性,也取得了一些结果,但其光催化反应须在高压汞灯下进行不符合节能原则。

另外,在复合半导体光催化剂或杂质改性二氧化钛光催化剂中再担载一些重金属将对二氧化钛的光催化产生进一步的影响,目前担载的贵金属主要有Pt,Ru等。

其四是利用有机染料对二氧化钛改性。

基于光活性染料吸附于光催化剂表面的性质,在二氧化钛中加入一定量的光敏染料,以扩大其激发波长围,增强光催化反应效率。

在光催化反应过程中,一方面这些有机染料在可见光下有较大的激发因子,另一方面染料分子可以提供电子给宽禁带的二氧化钛从而扩大激发波长围,改善光催化反应效应。

常用的有机染料敏化剂有硫堇、曙红、叶绿素、Ru32+(byp)、赤藓红B等。

另外Uchihana等认为表面衍生及表面鳌合作用能影响半导体的能带位置,对半导体的光催化活性影响很大;伟韧等认为量子化的TiO2粒子也对其光催化作用产生影响,纳米级的TiO2粒子颗粒越小,表面积越大,越利于光催化反应在表面进行,反应速率和效率越高。

目前,国外在直接利用太阳光进行光催化方面,取得了较大进步,国士夫等也进行了这方面的研究,但国大多研究者仍然采用强紫外光灯具或高压汞灯做光催化源,能量消耗大,灯具对人体的刺激损伤亦很大随着人类社会的发展和进步,环境污染问题和能源问题己成为困扰人类的两大难题。

综合考虑能源问题和环境污染问题,将是光催化研究的发展趋势,直接利用太阳光能替代紫外灯和高压汞灯,通过改性掺杂,使TiO2在整个太阳光波段有很好的光谱响应和强的光催化活性,将是科学工作者研究的新方向。

1.5纳米TiO2光催化氧化技术的研究现状及应用前景

纳米TiO2光催化降解反应可用于环境治理的许多方面。

目前,国外已有很多关于光催化氧化方面研究的报告。

环境治理方面的研究,主要集中在6个方面。

(1)降解空气中的有害有机物[6]

近年来,随着室装潢涂料油漆用量的增加,室空气污染越来越受到人们的重视。

对室主要的气体污染物甲醛、甲苯等的研究结果表明,光催化剂可以很好地降解这些物质,其中纳米TiO2的降解效果最好,几乎达到100%。

用TiO2制成的环境净化涂料对空气NOX净化效果良好,降解率高,在太阳光下,达到97%。

其降解机理是在光照条件下将这些有害物质转化为二氧化碳、水、氮气和有机酸。

纳米TiO2的光催化剂也可用于石油、化工等产业的工业废气处理,改善厂区周围空气质量,近来许多研究结果也都显示TiO2光催化净化,在消除室外大气、工厂中污染物方面有着潜在的应用前景。

(2)降解有机磷农药

20世纪70年代发展起来的有机磷农药品种占我国农药产量的80%,它的生产和使用会造成大量有毒废水,使用纳米TiO2来催化降解,可以使这一环保难题得到根本解决。

阿特拉津是目前应用最为广泛的化学除草剂之一,生产或使用不当会造成当地地表水和地下水中阿特拉津的残留。

当水体中阿特拉津浓度达到0.1×10-6时,会对引水灌溉的稻田产生毁灭性伤害。

阿特拉津不易在水体中挥发,用碱或无机酸降解需要高温条件并会改变废水pH值。

天津化工研究、天津大学化工系霍爱群、谭欣等用纳米TiO2膜光催化成功地降解了废水中的阿特拉津。

利用纳米TiO2(锐钛型)膜、250W高压汞灯(2只)照射含阿特拉津30mg/L的水溶液10h,在有溶解氧的条件下,其降解率达98%。

(3)用纳米TiO2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1