一元一次方程整章教案.docx
《一元一次方程整章教案.docx》由会员分享,可在线阅读,更多相关《一元一次方程整章教案.docx(34页珍藏版)》请在冰豆网上搜索。
一元一次方程整章教案
课题:
3.1.1一元一次方程
课型:
新课
任课教师
赵秋毅
教学内
容简析
本节课是通过丰富实例,从算式到建立一元一次方程,展开方程是刻画现实生活的有效数学模型.
学生学
情分析
方程就是将众多实际问题“教学化”的一个重要模型.因此,课本从学生熟悉的实际问题开始,从算式到方程,展开方程的学习,以使学生认识到方程的出现源于解决问题的需要,体会学习方程的意义和作用.
教学
目标
知识目标:
通过观察,归纳一元一次方程的概念.根据方程解的概念,会估算出简单的一元一次方程的解.
技能目标:
通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.
情感目标:
鼓励学生进行观察思考,发展合作交流的意识和能力.
教学重、
难点
重点:
了解一元一次方程的有关概念,会根据已知条件,设未知数,列出简单的一元一次方程,并会估计方程的解。
难点:
找出问题中的相等关系,列出一元一次方程以及估计方程的解。
教具学具及多媒体应用
课时
1节
教学过程
教师活动
学生活动
3.1.1一元一次方程
教学过程
一、复习提问
在小学里,我们已学习了像2x=50,3x+1=4等简单方程,那么什么叫方程呢?
什么叫方程的解和解方程呢?
答:
含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程.
怎样根据问题中的数量关系列出方程?
怎样解方程?
二、新授
1.怎样列方程?
让学生观察章前图表,根据图表中给出的信息,回答以下问题.
(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,你知道,汽车从王家庄行驶到青山用了多少时间?
青山到秀水呢?
(2)青山与翠湖、秀水到翠湖的距离分别是多少?
(3)本问题要求什么?
(4)你会用算术方法解决这个实际问题呢?
不妨试试列算式.
(5)如果设王家庄到翠湖的路程为x(千米),你能列出方程吗?
解:
(1)汽车从王家庄行驶到青山用了3小时,青山到秀水用了2小时.
(2)青山与翠湖的距离为50千米,秀水与翠湖的距离为70千米.
(3)王家庄到翠湖的距离是多少千米?
(4)分析:
要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,而王家庄到青山的时间为3小时,所以必需求汽车的速度.
如何求汽车的速度呢?
这里青山到秀水的时间为2小时,路程为(50+70)千米,因此可求的汽车的平均速度为(50+70)÷2=60(千米/时)
王家庄到青山的路程为:
60×3=180(千米)
所以王家庄到翠湖的路程为:
180+50=230(千米)
学生回答
师生共同完成
列综合算式为:
×3+50
(5)分析:
先画出示意图,示意图往往有助于分析问题.
从上图中可以用含x的式子表示关于路程的数量:
王家庄距青山(x-50)千米,王家庄距秀水(x+70)千米.
从章前图表中可以得出关于时间的数量:
从王家庄到青山行车3小时,从王家庄到秀水行车5小时.
由路程数量和行车时间的数量,可以得到行车速度的表达式.
汽车从王家庄开往青山时的速度为
千米/时,汽车从王家庄开往秀水的速度为
千米/时.
要列出方程,必需找出“相等关系”,题目中还有哪些相等关系吗?
根据汽车是匀速行驶的,可知各段路程的车速相等.
于是列出方程:
=
思考:
对于以上的问题,你还能列出其他方程吗?
如果能,你依据的是哪个相等关系?
根据汽车匀速行驶,可知各段路程的车速相等.
所以还可以列方程:
=
或
=
列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式即方程.
例1:
根据下列问题,设未知数并列出方程.
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
分析:
设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
分析:
设再经过x月这台计算机的使用时间达到规定的检测时间,根据每月再使用150小时,那么x月共使用150x小时.
能表示这个问题的相等关系是什么?
相等关系是:
已使用的时间1700小时+还可以使用的时间150x小时=规定的检测时间2450小时.
从而列出方程:
1700+150x=2450.
找出表达问题意义的相等关系是列出方程的关键.
(3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?
问:
女生占全体学生数的52%,那么男生占全体学生数的(1-52%),如果设这个学校有x个学生,那么用含x的式子表示女、男学生数.
女生有52%x人,男生有(1-52%)x人;
问题中的相等关系是什么?
师生共同完成
学生完成
学生回答
师生共同完成
学生回答
师生共同完成
(女生比男生多80人)即女生人数-男生人数=80或女生人数=男生人数+80.
列方程:
0.52x-(1-0.52)x=80或0.52x=(1-0.52)x+80.
2.一元一次方程的概念.
观察以上所列出的各方程,有什么特点?
每个方程有几个未知数,未知数的指数是多少?
只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程.
例如方程2x-3=3x+1,
-3=2y等都是一元一次方程,而x+y=5,x2+3x=2都不是一元一次方程.
以上分析过程可归纳为:
分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).
观察方程4x=24,不难发现,当x=6时,4x的值是24,这时方程等号左右两边相等,x=6叫做方程4x=24的解,这就是说,方程4x=24中未知数x的值应是6.
从方程1700+150x=2450,你能估算出x的值吗?
这里x是正整数,如果x=1,那么方程左边=1700+150×1=1850≠右边
所以x≠1.
如果x=2,则方程左边=1700+150×2=2000≠右边,
所以x≠2.
类似地,我们可以列出下面的表.
x的值
1
2
3
4
5
6
…
1700+150x
1850
2000
2150
2300
2450
2600
…
从表中可以发现,当x=5时,1700+150x的值是2450.
这时方程1700+150x=2450等号左右两边相等,x=5叫做方程1700+150x=2450的解,这就是说,方程1700+150x=2450中未知数x的值应是5.
解方程就是求出使方程中等号两边相等的未知数的值的过程,这个值就是方程的解.
你能从表中发现方程1700+150x=2600的解吗?
当x=6时,1700+150x的值为2600,即x=6时方程等号两边的值相等,所以这个方程的解是x=6.
思考:
你能估算出方程2(x+1.5x)=24和方程0.52x-(1-0.52)x=80的解吗?
以上估算难度较大,第一个方程,当x=4时,方程左边=20<24;当x=5时方程左边=25>24,所以取x=4.7或x=4.8.试一试,结果当x=4.8时,方程左边=24=右边,所以方程的解为x=4.8.第二个方程的解为x=2000,困难更大了,可以告诉学生,当我们学习了方程的解法后,就很容易求出x的值了.
思考:
x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?
三、巩固练习
课本第82页练习.
1.设沿跑道跑x周,可以跑3000m,根据相等关系──x周共长3000m.
所以列方程:
400x=3000,如果x=7,则400x=2800<3000,如果x=8,则400x=3200>3000,如果x=7.5,则400x=4007.5=3000,所以沿跑道跑7周半,可以跑3000m.
2.如果设买甲种铅笔x枝,那么买乙种铅笔(20-x)枝,买甲种铅笔用去0.3x元,乙种铅笔用去0.6(20-x)元,相等关系是:
学生回答
师生共同完成
学生回答
师生共同完成
学生回答
师生共同完成
两种铅笔共用了9元钱,由此可列方程.
0.3x+0.6(20-x)=9
3.设上底长为xcm,那么下底长为(x+2)cm,
根据梯形面积公式,可列方程:
=40
四、课堂小结
列方程是本节课重点,掌握列方程解决实际问题方法步骤:
设未知数──用含未知数的式子表示问题中的数量关系.
找出相等关系──列出一元一次方程.
其中找相等关系是关键也是一个难点,这个相等关系要能够表示应用题全部含义的相等关系,也就是题目中给出的条件应予充分利用,不能把同一条件重复利用.
五、作业布置
1.课本第84页至第85页习题3.1第1、2、5、6、9题.
2.选用课时作业设计.
学生回答
师生共同完成
板书设计
第一课时 3.1.1一元一次方程
1.一元一次方程
2.练习
课后反思
课题:
3.1.2等式的性质
课型:
新课
任课教师
赵秋毅
教学内
容简析
以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。
学生学
情分析
方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的突破。
正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
教学
目标
1.知识目标:
会利用等式的两条性质解方程.
2.技能目标:
利用天平,通过观察、分析得出等式的两条性质.
3.情感目标:
培养学生参与数学活动的自信心、合作交流意识.
教学重、
难点
重点:
了解等式的概念和等式的两条性质,并能运用这两条性质解方程.
难点:
由具体实例抽象出等式的性质.
教具学具及多媒体应用
课时
1节
教学过程
教师活动
学生活动
3.1.2等式的性质
一、引入新课
方程是含有未知数的等式,为了讨论解方程,我们先来研究等式有什么性质?
二、新授
1.什么是等式?
用等号来表示相等关系的式子叫等式.
例如:
m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式,我们可以用a=b表示一般的等式.
2.探索等式性质.
观察课本图3.1-2,由它你能发现什么规律?
从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还保持平衡.
从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是保持平衡.
等式就像平衡的天平,它具有与上面的事实同样的性质.
等式的性质1:
等式两边都加(或减)同一个数(或式子),结果相等.
例如等式:
1+3=4,把这个等式两边都加上5结果仍是等式即1+3+5=4+5,把等式两边都减去5,结果仍是等式,即1+3-5=4-5.
怎样用式子的形式表示这个性质?
如果a=b,那么a±c=b±c.
观察课本图3.1-3,由它你能发现什么规律?
可以发现,如果把平衡的天平两边的量都乘以(或除以)同一个量,天平还保持平衡.
等式性质2:
等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等.
如果a=b,那么ac=bc.
如果a=b,(c≠0),那么
=
.
性质2中仅仅乘以(或除以)同一个数,而不包括整式(含字母的