[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt

上传人:zf 文档编号:30855319 上传时间:2024-03-14 格式:PPT 页数:123 大小:1.48MB
下载 相关 举报
[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt_第1页
第1页 / 共123页
[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt_第2页
第2页 / 共123页
[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt_第3页
第3页 / 共123页
[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt_第4页
第4页 / 共123页
[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt_第5页
第5页 / 共123页
点击查看更多>>
下载资源
资源描述

[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt

《[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt》由会员分享,可在线阅读,更多相关《[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt(123页珍藏版)》请在冰豆网上搜索。

[物理化学英语课件]统计热力学Elementary_statistical_thermodynamics.ppt

Chapter8Elementarystatisticalthermodynamics8.1IntroductionStatisticalthermodynamics,orstatisticalmechanics,isthestudyofthemicroscopicbehaviorsofthermodynamicsystemsusingstatisticalmethodsandprobabilitytheory.TheessentialprobleminstatisticalthermodynamicsistodeterminethedistributionofagivenamountofenergyEoverNparticlesinasystem.Themacroscopicproperties,suchasthermodynamicenergy,heatcapacity,etc.,canbecalculatedintermsofpartitionfunctions.Statisticalthermodynamicsisabridgeofconnectingbetweenmacroscopicandmicroscopicpropertiesofasystem.DefinitionofstatisticalthermodynamicsTherearetwokindsofsystemsInteractingsystem(相倚子系统)Non-interactingsystem(独立子系统,forinstance,idealgas)Onlythelatterwillbeintroducedinthischapter.TwokindsofparticlesIdenticalparticles,orindistinguishableparticles(suchasgaseousmolecules),isalsocallednon-localizedparticles.Distinguishableparticles(Suchastheatomsincrystal),isalsocalledlocalizedparticles.8.2Energylevelanditsdegeneracy012345Energylevelsaresaidtobedegenerate,ifthesameenergylevelisobtainedbymorethanonequantummechanicalstate.Theyarethencalleddegenerateenergylevels.Thenumberofquantumstatesatthesameenergyleveliscalledthedegreeofdegeneracy.Amolecularenergystateisthesumofanelectronic(e),nuclear(n),vibrational(v),rotational(r)andtranslational(t)component,suchthat:

ThedegreeoffreedomofmovementTranslation:

x,y,zF=3RotationForlinearmolecules,F=2Fornon-linearmolecules,F=3VibrationApolyatomicmoleculecontainingnatomshas3ndegreesoffreedomtotally.Threeofthesedegreesoffreedomcanbeassignedtotranslationalmotionofthecenterofmass,twoorthreetorotationalmotion.3n-5foralinearmolecule;3n-6foranonlinearmoleculeCO2has33-5=4degreesoffreedomofvibration;nonlinearmoleculeofH2Ohas33-6=3degreesoffreedomofvibration.8.2.1TranslationalparticleTheexpressionfortheallowedtranslationalenergylevelsofaparticleofmassmconfinedwithina3-dimensionalboxwithsidesoflengtha,b,cisWhereh6.62610-34Js,nx,ny,nzareintegralscalledquantumnumbers.Thenumberofthemis1,2,.Ifa=b=c,equationbecomesallenergylevelsexceptgroundenergylevelaredegenerate.ExampleAt300K,101.325kPa,1molofH2wasaddedintoacubicbox.Calculatetheenergylevelt,0atgroundstate,andtheenergydifferencebetweenthefirstexcitedstateandgroundstate.SolutionTaketheH2attheconditionasanidealgas,thenthevolumeofitisThemassofhydrogenmoleculeistheenergydifferenceissosmallthatthetranslationalparticlesareexcitedeasilytopopulateondifferentexcitedstates,andthattheenergychangesofdifferentenergylevelscanbethinkofasacontinuouschangeapproximately.8.2.2Rigidrotator(diatomic)Theequationforrotationalenergylevelofdiatomicmoleculesis:

whereJisrotationalquantumnumber,Iisthemomentofinertia(转动惯量)isthereducedmass(折合质量),Thedegreeofdegeneracyis8.2.3One-dimensionalharmonicoscillatorWherevquantumnumber,whenv=0,theenergyiscalledzeropointenergy.Onedimensionalharmonicvibrationisnon-degenerate.8.2.4ElectronandatomicnucleusThedifferencesbetweenenergylevelsofelectronmotionandnucleusmotionarebigenoughtokeeptheelectronsandnucleistayattheirgroundstates.Bothdegreeofdegeneracy,ge,0,forelectronmotionatgroundstateanddegreeofdegeneracy,gn,0,fornucleusmotionatgroundstatearedifferentfordifferentsubstances,buttheyareconstantforagivensubstance.8.3Distributionandmicrostate8.3.1DistributionofenergylevelsWecalltheoccupationnumbernithenumberofdistributioninenergyleveli.Forexample,adistributionof6identicalparticlesamong9unitsofenergymustsatisfywiththeconditionsThetotalnumberofwaysofdistributionis26.8.3.2DistributionofstatesThenumberofparticlesoccupiedinamicroscopicquantumstateiscalledthenumberofdistributionofstates.OnedistributionDofenergylevelshasacertainnumberofmicrostatesWD,thesumofallWDisthetotalnumberofmicrostatesofasystem.Thatis.Thereare16waysofdistributionoffourdistinguishableparticlesintwoidenticalboxes.8.3.3DistinguishableparticlesConsiderNdistinguishableorlocalizedparticlesdistributeintoNnondegenerateenergylevels.Nowconsideranotherkindofdistributionthatthenumbersofparticlesoccupiedindifferentenergylevelsaredenotedasn1,n2,ni.Alltheenergylevelsarestillnondegenerate.threedifferentdistributionsofsixparticles.Theexchangesofparticlesinthesameenergyleveldonotcreatenewmicrostatebecauseeveryenergylevelhasonlyonequantumstate.ThenumbersofmicrostatesforthreedistributionsareWenowconsiderthatthedegreeofdegeneracyofenergylevelsisg1,g2,gi.Supposenumberofquantumstatesisunconstrained.Considerniparticlesoccupyenergyleveli,everyparticlecanchoseonefromallquantumstatesintheenergylevel.HencethewaysofselectionforniparticlesareForallenergylevels,thenumberofmicrostatescausedbythedegeneracyoflevelsisthenumberofmicrostatesforacertaindistributionDcanbewrittenas8.3.4Identicalparticlesassumethatthereisnorestrictiononthenumberofparticleswhichcanoccupyagivenenergylevelandthatenergylevelsisnondegenerate.thereisonlyonewayforniparticlestooccupytheenergyleveli.Therefore,thenumberofmicrostatesofadistributionDforasystemisWD=1.Ifenergylevelisdegenerate,Itiseasytoseethatthereis(2+1)waysofdistributing2particlesintwoquantumstateswhichcanbewrittenasSuppose8identicalparticlespopulatein4quantumstatesinanenergylevel.Thisisequivalenttothepermutationofthesumof8personsand(4-1)dividingwalls,bothpersonsanddividingwallsareindistinguishable.thenumberofmicrostatesforniparticlesdistributingingiquantumstatesinanenergylevelisonekindofdistributionistheproductsofthenumberofmicrostatesforeverylevelmultipliedbyoneanother.ThatisIfnigi,thisequationcanbesimplifiedintoComparethisequationwithequation,wecanseethatunderthesameconditionsofN,ni,andgi,thenumberofmicrostatesofadistinguishable-particlesystemisN!

timesthatofanidentical-particlesystem.8.4Themostprobabledistribution,equilibrium8.4Themostprobabledistribution,equilibriumdistribution,andBoltzmanndistributiondistribution,andBoltzmanndistribution8.4.1TheprincipleofequalaprioriprobabilitiesStatisticalthermodynamicsisbasedonthefundamentalassumptionthatallpossibleconfigurationsofagivensystem,whichsatisfythegivenboundaryconditionssuchastemperature,volumeandnumberofparticles,areequallylikelytooccur.ExampleConsidertheorientationsofthreeunconstrainedanddistinguishablespin-1/2particles.Whatistheprobabilitythattwoarespinupandonespindownatanyinstant?

SolutionOftheeightpossiblespinconfigurationsforthesystem,Thesecond,third,andfourthcomprisethesubsettwoupandonedown.Therefore,theprobabilityforthisparticularconfigurationisP=3/88.4.2ThemostprobabledistributionTheprobabilityfordistributionDisthemicrostatesofthreeharmonicoscillatorswhicharedistinguishableparticleswithtotalvibrationalenergyof=WI+WII+WIII=3+6+1=10Whichdistributionisthemostprobabledistribution?

WDiscalledthermodynamicprobabilityofdistributionD8.4.3EquilibriumdistributionInasystemwithlargenumberofN,themostprobabledistributionmayrepresentalldistributions.StirlingsapproximationamoreaccurateformConsiderasystemconsistingofNlocalizedparticleswhichdistributeovertwodegeneratequantumstates,AandB.MdenotesforthenumberofparticlesinstateAand(N-M)instateB.thenumberofmicrostatesforthisdistributioncanbeexpressedasWhenM=N/2,WDhasamaximumvalue.()()!

2/!

2/!

NNNWB=Everyparticlehastwopossibilitiestopopulateonthequantumstates,stateAorstateB.Thetotalnumberofmicrostatesforthesystemwouldbe2N.TheprobabilityforthemostprobabledistributionisWhenthenumberofparticlesinasystemisabout1024,theprobabilityisthenWeconsideranotherdistributionthathasadistributionnumberdeviatingmfromN/2,itsprobabilitywouldbeWhenmN,intermsofStirlingsapproximationthisequationcanbeconvertedintoTheprobabilityforalldistributionsrangingfromisthesummationoftheirprobabilities.Byusingerrorfunctionweobtainthedistributionatequilibriumismostcertainlygoingtobethemostprobabledistribution,orattheveryleast,withthesekindofnumbers,somethingveryclosetoit.8.4.4BoltzmanndistributionForalargenumberofnoninteractingparticles=1.3810-23JK-1,Boltzmannconstant.isproportionalcoefficient.ThepopulationcanalsobeexpressedintheformofenergyleveldistributionThetotalnumberisthenDefinetheparticlepartitionfunctionthenThedistributionthatobeystheseequationsiscalledtheBoltzmanndistribution.TheequationsarealsoknownasBoltzmanndistributionlaw.foranytwolevels:

Theratiotototalnumber:

Boltzmanndistributionisthemostprobabledistribution.ThemaximumvaluecanbederivedbyusingLagrangesmethodofundeterminedmultipliers8.5Computationsofthepartitionfunction8.5.1Somefeaturesofpartitionfunctions

(1)atT=0,thepartitionfunctionisequaltothedegeneracyofthegroundstate.

(2)WhenTissohighthatforeachtermi/kT=0,(3)factorizationpropertyIftheenergyisasumofthosefromindependentmodesofmotion,thenThepartitionfunctionsfor5modemotionsareexpressedas8.5.2Zero-pointenergyzero-pointenergyistheenergyatgroundstateortheenergyasthetemperatureisloweredtoabsolutezero.Supposesomeenergylevelofgroun

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1