青岛版小学六年级 数学下册第一单元.docx
《青岛版小学六年级 数学下册第一单元.docx》由会员分享,可在线阅读,更多相关《青岛版小学六年级 数学下册第一单元.docx(22页珍藏版)》请在冰豆网上搜索。
青岛版小学六年级数学下册第一单元
我学会了
教学内容:
青岛版小学数学教材第十二册第一单元“我学会了”。
教材简析:
“我学会了”是对百分数
(二)这一单元的复习与检测,通过复习,可以帮助学生进一步巩固和加深对所学知识的理解,沟通知识之间的联系,以便于学生今后更好的解决有关百分数的实际问题。
教学目标:
1、进一步理解和掌握成数、税率、折扣与利息的含义。
2、学会根据数学知识之间的内在联系整理有关百分数知识,发展逻辑思维能力,提高解决实际问题的能力。
3、激发学生参与热情,培养主体意识和数学应用意识,创新意识和实践能力。
教学过程:
一、提供素材、激发兴趣。
出示:
100%、15%、136%、71%……
师谈话:
看到这些百分数你想到了哪些知识?
学生回答,引导学生说出:
(百分数的意义、成数、税率、折扣与利息的含义、百分率、用百分数解决实际问题等)
师谈话:
还有不同的想法吗?
……
(根据学生的回答,教师有选择地板书。
)
【设计意图】:
简单的材料,开放的提问,放手让学生发挥各自已掌握的知识解决问题。
从中教师可以把握学生的起点,有的放矢。
学生的思维是参差不齐的,开放的,想到什么就是什么,能解决什么就解决什么,教师必须敏感的捕捉信息,进行必要的修整。
学生不受教师思维的限制,思维的浪花被激起,每一位学生都获得情感的满足。
二、梳理知识,形成网络。
1、质疑
谈话:
刚才,同学们想到了这么多有关百分数的知识,如果把这些知识这样放在一起,有什么感觉?
怎么办?
【设计意图】:
激发起学生整理的需要,从中感受到整理知识的重要性,帮助学生构建完整的知识网络。
2、整理
谈话:
要想使这些知识有条理,找到它们之间的联系,就需要对这些知识进行整理。
同学们想怎样整理?
(指名说一说整理的思路。
)
3、小组合作
谈话:
下面请四人小组合作,根据知识要点和知识间的联系进行整理,并记录。
我们来比一比,看哪组整理得既清楚,又完整,而且有特色。
(学生分组整理,教师巡视指导,参与讨论)
4、展示交流
谈话:
同学们,整理好了吗?
下面我们就一起来交流一下整理的结果和过程。
在介绍之前,老师提一个小小的要求,请大家认真听,再想一想,请你给它们做个评价。
(学生展示,学生点评、教师有选择、有重点的板书)
5、回顾总结
谈话:
请同学们回想一下,我们是根据什么来整理这些知识的?
分成哪几部分?
在学生汇报时,重点引导学生:
1.说一说成数、税率、折扣与利息的含义,知道它们在工农业生产和日常生活中的作用。
2.总结解决简单的百分数问题时,让学生举例说说能解决哪些实际问题。
【设计意图】:
小组合作完成整理的过程,每一个成员充分发表自己的意见,个人的个性得到张扬,更从其他成员的讨论中完善知识的建构,取长补短。
同时培养学生学会倾听,学会交流。
教师不在是高高在上,参与到学生的讨论中,发表或指导学生的建议,成为合作者、引导者。
三、自我检测,形成技能。
1、质疑扫清障碍。
对于这部分知识,大家还有哪些地方不明白?
请提出来。
2、基本练习。
(课本第45页练习)
3、综合练习。
(教师出题)
4、拓展练习。
(教师出题)
【设计意图】:
学生通过自我检测,明白自身的不足之处,可以在今后的学习中进行弥补。
学生的反思是进一步学习的动力,教师要多引导学生进行自我反思,有利于自主学习,自我肯定,增强学生的独立意识。
信息窗3:
纳税
教学内容:
青岛版教材六年级下册第一单元信息窗3,第1、2个红点问题。
教材简析:
该信息窗呈现了孔林、孔庙、孔府三幅图片,并以文字的形式提供了2004年“十一”黄金周期间曲阜市的游客人数及门票收入等信息,引导学生提出有关税率的问题,引入对纳税和折扣等知识的学习。
教学目标:
1、理解税率、折扣的含义,知道它们在工农业生产和日常生活中的作用,会进行这方面的简单计算并能解决简单的实际问题。
2.在解决实际问题的过程中,进一步体会数学知识间的内在联系,增强思维的深刻性。
3.在用百分数解决实际问题的过程中,体会百分数与生活的密切联系,感受百分数在现实生活中的应用价值,提高学习百分数知识的兴趣。
教学过程:
一、创设情境,提出问题。
谈话:
同学们,“十一”黄金周还在继续,今天我们要去的地方是曲阜。
曲阜可是我们山东有名的文化圣地,同学们中有去过曲阜的吗?
谁能来给我们介绍一下曲阜都有哪些历史名胜?
指名学生简单说一说曲阜的名胜古迹,如果学生没有知道的,老师可以简单介绍一下。
谈话:
既然曲阜是一个如此有文化渊源的城市,那么它的人气如何呢?
让我们来看一组资料。
出示信息图,指名说出信息图中的数学信息。
理清信息后,教师直接提出问题:
如果按3%的税率缴纳营业税,黄金周期间曲阜市应上缴门票收入营业税多少万元?
【设计意图】由学生或老师介绍曲阜的名胜古迹创造出一个比较真实的情境,激发学生想要去了解有关信息的兴趣,但由于学生对税率等相关知识还没有一个具体、全面的了解,因此由老师直接提出问题,避免学生因提问题提不到点子上而浪费时间。
二、合作探究,解决问题。
1、解决第一个红点问题。
谈话:
在老师提出的问题中,你有没有什么不懂的地方?
学生提出疑问,疑问大都会集中在有关纳率、税率、税额的相关知识上。
谈话:
课前老师让同学们回去搜集有关纳税的一些知识,下面让我们来交流一下,你都知道了些什么?
全班交流,教师适时补充。
谈话:
看来百分数在生活中的应用还真是不少呢,通过刚才同学们的交流,再结合信息图中的信息,你认为要求应上缴门票营业税多少万元,就是求什么?
为什么?
让学生充分思考后,再指名回答。
回答时不光要让学生说出“要求应上缴门票营业税多少万元,就是求什么”,还要让学生说一说自己是怎样想的,重点明确求应上缴门票收入营业税多少万元就是求营业额的3%是多少。
学生明确问题后,独立解答,全班交流。
谈话:
根据刚才同学们解决的这个问题,你能总结出“求营业税”问题的基本方法吗?
学生独立思考后,先在小组中讨论交流,然后全班交流,统一方法:
税额=营业额×税率。
2、小练习:
自主练习第1题。
第1题是求税额的基本练习题。
练习时,在学生独立解答后,重点让学生说说有关税额的数量关系和自己是怎样计算的。
3、解决第二个红点问题。
谈话:
为了游览“三孔”,光明小学的师生遇到了一些困难,让我们去看盾能不能帮上忙?
出示第二个红点的信息,师生一起整理出其中的数学信息。
谈话:
“八五折”是什么意思?
你在生活中,遇到过有关折扣的问题吗?
结合在生活中常遇到的打折问题,使学生理解“折扣”的意义及在生活中的实际应用。
一折就是十分之一,写成百分数就是10%,表示现在的价钱是原价的10%;八五折就是十分之八点五,写成百分数是85%,表示现在的价钱是原来的85%。
总之,几折就是十分之几,写成百分数就是百分之几十。
谈话:
我们已经了解了折扣的意义,那么现在你能独立的解答这道题了吗?
学生独立解答,交流时让学生说一说自己是怎么想的。
【设计意图】解决这两个问题的难点就在于“税率”和“折扣”的相关知识学生不了解,因些在解决问题之前,先组织学生讨论交流这两方面的有关知识,明确它们的含义,在此基础上,学生就会对问题有了明确的理解,就能够独立的解答这些问题了。
三、巩固应用,拓展练习。
1、自主练习第4题。
第4题是一道求汇费的题目,是纳税问题的拓展。
练习时,先让学生理解汇率的含义,即汇费占汇款总数的百分之几,然后根据“求一个数的百分之几是多少”的方法解答。
【设计意图】在简单应用的基础上进行拓展练习,加深对所学知识的理解,锻炼学生举一反三的能力。
信息窗2:
青岛假日游——百分数实际问题
教学内容:
义务教育课程标准实验教科书青岛版小学数学十二册第一单元信息窗二。
教材简析:
该信息窗以青岛市的几个著名旅游景点为背景,提供了2003年和2004年“十一”黄金周期间来青岛的游客人数和旅游收入等信息,通过解决“到海滨风景区的游客大约有多少万人”、“2004年‘十一’黄金周青岛旅游收入约多少亿元”和“2003年同期到青岛旅游的约有多少万人”等问题,引入对“求一个数的百分之几是多少”、“求比一个数多(少)百分之几的数是多少”和“已知比一个数多(少)百分之几的数是多少,求这个数”等知识的学习。
这部分知识是本单元的教学难点。
教师要充分重视知识的迁移性,充分利用学生已有的知识来学习。
由分数问题的解决方法迁移到这一类百分数问题的解决方法。
教学目标:
1.通过学习使学生掌握百分数应用题的数量关系,能够正确解答“求一个数的百分之几是多少的应用题。
”
2.培养学生分析、解答应用题的能力。
3.通过学习活动,培养积极的学习态度,树立学好数学的信心。
教学过程:
第1课时
一、创设情境、激趣导入:
谈话:
同学们,青岛作为国家著名的旅游胜地,气候怡人,景色优美,每年“十一”期间都会迎来大量游客到青岛旅游,我们能生活在这样一座美丽的海滨城市非常的幸福。
[设计意图]从学生感兴趣的话题引入,让学生谈一谈自己对青岛的印象,具体到海滨风景区有什么印象,旅游时的感受等,然后引导学生看数学信息,提出问题。
二、自主探究、获取新知:
1、仔细观察情境图,收集题中的数学信息,提出问题
谈话:
观察情境图,你获得了哪些信息?
你能提出什么数学问题?
预设:
(1)到海滨风景区的游客大约有多少万人?
(2)到其他景区的游客大约有多少万人?
教师根据学生的提问,有选择的进行板书,如:
到海滨风景区的游客大约有多少万人?
(学生提出的其他合理问题先放进问题口袋,下节课再解决)
下面我们先来解决“到海滨风景区的游客大约有多少万人?
”课件出示第一个红点例题。
引导学生分析数量关系。
(1)读题。
找条件和问题,明确这道题是把谁看成单位“1”。
[设计意图]审题是正确解题的前提。
学生往往对审题拘于形式,拿到题目就把题中数字简单组合,导致错误。
(2)学生画图并自己试做。
102万人
到海滨风景区的占84%
?
万人
[设计意图]充分发挥线段图的直观教学作用。
线段具有一定的直观性,能够化抽象为具体,有效地揭露题目中的数量关系,从而理清并掌握数量关系。
谈话:
要求到海滨风景区的游客大约有多少万人?
该怎样计算呢?
你能不能联系前面我们学过的求一个数的几分之几的解答方法,先自己想一想该如何列式,并说说列式的依据。
列好算式后,请学生独立计算,最后再交流计算结果。
102×84%=102×0.84=85.68(万人)
答:
及格的同学有85.68万人。
谈话:
我们在列式时为什么要用乘法计算?
学生同桌讨论后让学生交流自己的观点。
引导学生得出:
我们把黄金周到青岛旅游的总人数看作单位“1”,已知到海滨风景区的占总人数的84%,要求到海滨风景区的人数,就是求102万人的84%是多少。
所以用乘法。
补充练习:
(1)张红看一本200页的书,已经看了全书的80%,看了多少页?
(2)工人叔叔要加工1500个零件,还剩下10%没有加工完,还剩下多少个没有加工完?
(学生自主完成,集体交流)
[设计意图]通过补充练习,帮助学生进一步巩固解决“求一个数的百分之几是多少”这类问题的思路和方法。
2.课件出示自主练习第7题
敦煌莫高窟藏经洞出土文献5万余件。
这些珍贵的文献约有70%流失海外,国内现存莫高窟出土文献约有多少万件?
(1)画图,理解题意
(2)小组交流,列出算式后汇报:
方法
(1):
5-5×70%方法
(2):
5×(1-70%)
(3)学生四人小组内进行交流,交流解答方法的列式依据。
学生可能有的答案是:
1.根据线段图我们可以看出要求国内现存莫高窟出土文献约有多少万件?
可以先求出流失海外的大约有多少万件,然后再用一共出土的减去流失海外的数量。
2.我们小组是根据“这些珍贵的文献约有70%流失海外”这句话先求出了国内现存莫高窟出土文献约占出土文献总量的30%,这时要示国内现存莫高窟出土文献约有多少万件?
就是求5万件的30%是多少。
随机练习:
(自主练习第2题)学生自主解答,集体交流。
三、巩固练习
1.只列式不计算
(1)六年级一班有学生45人,上学期期末跳远测验有80%的同学及格,及格的同学有多少人?
(2)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
2.自主练习
第1题:
将下面百分数分别化成分数和小数。
(学生汇报时说出转化的方法)
学生讨论:
首先应该做什么?
怎么才能提高正确率?
自主练习第9题。
第12题:
在学生独立思考的基础上组织交流,使学生明确该题有两种解题思路:
一是先分别求第一期和第二期修的米数,再求第一期比第二期多修的米数;二是先求第一期比第二期多修了全长的百分之几,再求多修的米数。
这里不要求学生两种解题方法都掌握。
答案:
300×40%—300×30%=30(米)或300×(40%—30%)=30(米)。
[设计意图]通过多种形式的练习,既加强了学生对求一个数的百分之几是多少的问题的理解,又使学生能够灵活应用所学知识解决问题,并使不同层次的学生从中体会到成功的快乐。
四、课堂小结:
这节课我们研究了什么问题?
你有什么收获?
(引导学生进行总结,能用自己的话说出学习主要内容。
)
教学反思:
本节课教学是要让学生理解“求一个数的百分之几是多少”这类应用题的数量关系,掌握其解题方法,它与前面学习过“求一个数的几分这几是多少”应用题的解题思路和方法相同,所以在教学注重做到了以下两方面:
1.引导学生找出新旧知识的异同点,进一步强化了教学的重点。
总结出解题思路,掌握解题的关键及步骤。
2.运用迁移规律,以旧引新,调动学生参与新知识学习的积极性,教给学生掌握知识的方法与技能,使学生学会新知。
(胶州市实验初中小学部黄涛)
第2课时
一、创设情境:
同学们,通过上节课的学习,我们已经学会了解决“求一个数的百分之几是多少”的问题,并且还了解到每年黄金周到青岛旅游的人有很多,那么随之而来的是青岛的旅游收入也逐渐增多。
二、探究新知
1.出示信息窗,请学生收集数学信息并提出问题。
学生提问预设:
(1)2004年比2003年增长多少亿元?
(2)2004年“十一”黄金周青岛旅游收入约多少亿元?
第
(1)小题是学生上一节课学过的类型,请他们在练习本上列式计算,快速完成。
2.请学生把第
(2)题的信息和问题完整读一次,以明确题意。
(1)学生读题,找出题中的条件:
2003年旅游收入约8.38亿元,2004年比2003年同期增长2.3%。
(2)学生独立理解题意,思考:
2004年比2003年同期增长2.3%中的2.3%是什么意思?
学生回答得出:
2004年比2003年增长的占2003年的2.3%
谈话:
刚才同学们提出的第
(1)个问题就是求2004年比2003年增长多少亿元?
还记得怎么列的算式?
学生列式:
8.38×2.3%
现在谁能求出2004年“十一”黄金周青岛旅游收入约多少亿元?
学生独立列式,交流。
谈话:
你们能分别说说自己解答的思路吗?
引导学生得出:
方法
(1)先算出2004年比2003年增长多少亿元?
再加上2003年“十一”黄金周旅游收入就等于2004年的。
方法
(2)先算出2004年旅游收入是2003年的百分之几,然后再算2004年“十一”黄金周青岛旅游收入约多少亿元?
而要求2004年旅游收入是2003年的百分之几,我们是把2003年“十一”黄金周旅游收入看作单位“1”,2004年旅游收入就是2003年的(1+2.3%),要求2004年“十一”黄金周青岛旅游收入约多少亿元,就是求2003年的(1+2.3%),列式为8.38×(1+2.3%)。
请学生快速计算出结果,提醒学生计算时得数保留两位小数。
3.比较两种解法
这两种方法有什么联系?
学生自由发言讨论
小结:
求2004年“十一”黄金周青岛旅游收入多少亿元,大家想出两种解法,同学们可以根据自己的理解选择你喜欢的算法,不过我建议大家用第二种方法解,这种方法既简便,对以后的学习也更有帮助。
三、巩固练习
1.基本练习:
自主练习第6、8题
2.看算式补充问题:
五
(1)班学生今年共做好事400件,其中男生做了75%
①?
①400×75%
②?
②400×(1-75%)
③?
③400×[75%-(1-75%)]
四、课堂总结
今天我们学习了较复杂的百分数乘法应用题,复杂在哪?
解题的关键是什么?
(复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。
)
教学反思:
本节课的内容是“求比一个数多(少)百分之几的数是多少”的应用题,这部分内容与“求比一个数多(少)几分之几的数是多少”的应用题相似,只是相应的分率转换成了百分率。
教学时充分重视知识的迁移性,利用学生已有的知识来学习,让学生借助同类的分数问题的解决方法来解决百分数问题。
(胶州市实验初中小学部黄涛)
第3课时
教学内容:
信息窗3第三个红点内容(已知比一个数多或少百分之几的数是多少,求这个数)及自主练习3、4、11、13。
教学目的:
1.使学生掌握已知比一个数多或少百分之几的数是多少,求这个数的百分数应用题的分析与解答的方法,提高学生的分析解题能力。
2.通过练习,体会列方程解答稍复杂的百分数的实际问题,正确理解数量之间的相等关系的重要性。
教学重、难点:
掌握稍复杂的百分数应用题的分析与解答的方法,提高学生的分析解题能力。
教学过程
一、创设情境,提出问题
1.出示题目:
2004年“十一”黄金周来青岛旅游的约102万人,比2003年同期增长2%。
2.让学生根据信息窗中告诉的数学信息提出问题:
2003年同期来青岛旅游的约有多少万人?
(板书)
二、合作探究,解决问题
1.学生读题,思考:
(1)比2003年同期增长2%,这里的2%是哪两个数量比较的结果?
(2)这两个数量比较时,要把哪个量看作单位“1”?
单位“1”是已知还是未知?
(3)2003年的2%是哪个数量?
2.谈话:
你打算怎样来表示你理解到的题意?
引导让学生画线段图,根据图进一步理解以上3个问题
?
万人
2003年
比2003年同期增长2%
2004年
“十一”黄金周青岛旅游102万人
学生回答得出:
(1)这道题是把2003年黄金周来青旅游的人数看作单位“1”,它是未知的数量。
(2)这里的2%是2004年比2003年同期多的人数相当于2003年的2%。
(3)2003年的2%也就是增长的人数。
3.让学生根据自己的理解,试着找出题中的等量关系。
[设计意图]尽量先给学生自主探索的空间,让他们尝试自己来解决问题,同时注意尊重学生的想法,给他们相互交流的机会,调动学生学习的积极性,同时也能够培养学生灵活解决实际问题的能力,发展学生的思维。
4.让学生列方程解答
解:
设2003年同期来青岛旅游的约有x万人。
X+2%X=102
1.02X=102
X=100
答:
2003年同期来青岛旅游的约有100万人。
5.思考:
还可以列出不同的等量关系吗?
学生回答得出:
2003年同期来青岛旅游的人数×(1+2%)=2004年来青岛旅游的人数。
学生根据等量关系列出方程并解答。
[设计意图]在学习新知识的过程中,通过独立思考,运用已有知识和思维方法,尝试解决新问题,提高解决问题的能力,感受成功的喜悦,增强学习的自信心。
三、巩固练习
1.自主练习第3题
(1)先审题,画出线段图
问:
题中的数量间的相等关系是怎样的?
(足球场座位总数×5%=送出的门票数)
(2)学生根据等量关系列出方程并解答。
2.自主练习第4题
先让学生独立写出出油率的数量关系式,然后根据关系式列式解答。
通过比较,使学生体会到,第
(1)
(2)题所用的数量关系式是相同的,只是已知数量与所求问题不同,所以解题方法也不同。
3.自主练习第11、13题
练习时,要让学生说一说每道题的解题思路和方法,比较一下每道题中两个小题在数量关系和解答方法上有什么不同,从而加深对百分数几类问题的理解。
[设计意图]从学生的生活经验和已有的知识背景出发,在新知识的教学过程中,通过有序的思考,使学生理解和掌握新知,并能运用新知解决问题,发展数学思维能力。
四、回顾总结
通过这节课的学习你有什么收获?
当我们已知比一个数多(少)百分之几的
数是多少了,怎么求这个数。
教学反思:
本节课教学时充分发挥了学生的主体性,让学生在自主,合作和探究中发展。
教学时从学生的实际出发,尊重学生、相信学生,采取合作探究的方法,让学生在合作交流解决新知,给予他们充足的时间来理解题意,分析数量之间的相等关系。
(胶州市实验初中小学部陈秀娟)
信息窗一:
求一个数比另一个数多(或少)百分之几
教学内容:
义务教育课程标准实验教科书青岛版小学数学十二册第一单元信息窗一:
求一个数比另一个数多(少)百分之几;成数的意义及简单应用。
教材简析:
该信息窗呈现的是济南市10月2日客运情况的统计表。
统计表提供了2003年和2004年的10月2日济南市民航、铁路、公路运输游客量的比较情况。
通过解决“2004年民航的客运量比2003年同期增长百分之几”和“10月3日去济南近郊旅游的人数比10月2日减少百分之几”等问题,引入对“求一个数比另一个数多(少)百分之几”知识的学习。
教学目标:
1.使学生初步掌握“求一个数比另一个数多(或少)百分之几”的实际问题的分析方法,并能正确解答此类生活中的实际问题。
2.进一步提高分析、比较、解答实际问题的能力,培养学生认真审题的好习惯。
教学重难点:
掌握“求一个数比另一个数多(或少)百分之几”的实际问题的分析方法,并能够正确列式解答。
教学过程:
第1课时
一、创设情境、激趣导入:
谈话:
同学们,十一黄金周期间,人们往往选择外出游玩,下面我们一起来看看济南市客运情况。
二、自主探究、获取新知:
1.提出问题,明确目标:
谈话:
观察统计图,你获得了哪些信息?
你能提出什么数学问题?
教师根据学生的提问,有选择的进行板书,如:
2004年民航的客运量比2003年同期增长百分之几?
让学生独立完成:
(1)请自己试着画线段图分析
(2)独立思考,同桌讨论,解决问题。
学生汇报交流,引导学生得出:
2004年民航的客运量比2003年增长百分之几,就是指2004年比2003年增长的人数是2003年的百分之几。
我们可以先算2004年的客运量比2003同期多多少万人,再算2004年比2003年增长的数量是2003年的百分之几。
列式:
(0.49-0.47)÷0.47
=0.02÷0.47
≈0.043
=4.3%
答:
2004年民航的客运量比2003年同期增长4.3%。
(3)谈话:
我们在计算时,如果除不尽需要保留三位小数,然后再化成百分数。
这道题还有其它解法吗?
(4)学生独立思考,小组讨论,集体交流。
(交流时结合线段图分析)
列式:
0.49 ÷0.47-1
≈1. 043-1
=0.043
=4.3%
答:
2004年民航的客运量比2003年同期增长4.3%。
(5)让学生分析自己的解答思路,引导学生得出:
先算2004年的客运量是2003年的百分之几,然后再算2004年民航的客运量比2003年同期增长百分之几?
提问:
这儿为什么要减去1?
引导学生回答得出:
0.49 ÷0.47求的是2004年的客运量是2003年的百分之几,而题目要求2004年比2003的多百分之几,我们把2003年客运量看作“1”,所以要减去1。
2.合作交流,自主探究
出求绿点例题:
10月2日去济南近郊旅游的人数约为1万人,10月3日约为0.8万人。
10月3日比10月2日减少百分之几?