大空形态的控制相分离.docx

上传人:b****8 文档编号:30550407 上传时间:2023-08-16 格式:DOCX 页数:18 大小:1.20MB
下载 相关 举报
大空形态的控制相分离.docx_第1页
第1页 / 共18页
大空形态的控制相分离.docx_第2页
第2页 / 共18页
大空形态的控制相分离.docx_第3页
第3页 / 共18页
大空形态的控制相分离.docx_第4页
第4页 / 共18页
大空形态的控制相分离.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

大空形态的控制相分离.docx

《大空形态的控制相分离.docx》由会员分享,可在线阅读,更多相关《大空形态的控制相分离.docx(18页珍藏版)》请在冰豆网上搜索。

大空形态的控制相分离.docx

大空形态的控制相分离

MacroporousMorphologyControlbyPhaseSeparation

INTRODUCTION

Inordinarysol–gelprocessing,startingcompositionsaswellasreactionconditionsareselectedsoastomaintainthemixtureinahomogeneousstatethroughouttheprocessesincludingmixingofstartingcompounds,gelation,aging,dryingandheat-treatment.Highhomogeneityofaprecursorsolutionisespeciallyimportantforthefabricationoffibersandcoatings.Theapparentdisadvantageoftheformationofmicroscopic(sometimesmacroscopic)heterogeneityingels,however,canbeutilizedtocontroltheporestructureofthegels.Macroporeswithpreciselycontrolledsizeandsizedistributionareespeciallyimportantwhenvariousfunctionalizedgelmaterialsaretobeusedincontactwithliquidsolutionsinthattheyincreasethecontactprobabilityofexternalsubstancesontothesurfacesites.

Thepresentchapterdescribesthemethodofmacroporousmorphologycontrolthroughthesol–gelreactionaccompaniedbytheconcurrentphaseseparation.Generalprinciplesofthemethodareexplainedadoptingtypicalexperimentalsystemsasexamples.Theformationofmacroporousmorphologyinasmallconfinedspaceisalsoshownforanintriguingexampleofminiaturizationofthematerial.Anotherimportantfeatureofthegelswithcontrolledmacroporesisthatthemesoporestructurecanbetailoredindependentlyofthemacroporouscharacteristics.Sharplydistributedmesoporesareformedviabasicorhydrothermalagingprocess.Examplesofsupramolecularlytemplatedmesoporesinmonolithicmacroporousgelsbyuseofamphiphilicadditivesarealsopresented(Nakanishi,1997).

POLYMERIZATION-INDUCEDPHASESEPARATION

Letusfirstconsideratypicalhydrolysis–polycondensationofalkoxysilanesunderacidicconditionswhichgivesrelativelynarrowdistributionofthemolecularweightofthepolymerizingoligomers.Theaveragemolecularweightofthepolymerizingspeciesinasolutionincreaseswithreactiontimebyvirtuallyirreversiblepolycondensationreactionsamongthemonomers/oligomers.Thethermodynamicsofasolutioncontainingpolymerizingspeciestellsusthatmutualsolubilityamongtheconstituentsbecomeslowerastheaveragemolecularweightofthepolymerizingspeciesincreases(Flory,1971).Thisismainlyduetothelossofentropyofmixingamongtheconstituentswhichleadstotheincreaseofthefreeenergyofmixing,ΔG.

(23-1)

Thereductioninmutualsolubilitycausedbypolymerizationcanbecontrastedwiththatbyphysicalcoolingofthesystem(deGennes,1979;seeFig.23-1).Inthelattercase,thefreeenergyofmixingisincreasedbyloweringtemperature.Inbothcases,amulti-componentsystembecomeslessstableastheabsolutevalueoftheTΔStermdecreases.Insomecases,changesinthepolarityofoligomerswiththegenerationand/orconsumptionofsilanolgroupsmaycontributetoincreaseinΔHterm,whichalsodestabilizethesystemagainsthomogeneousmixing.Inanycase,whenthesignoffreeenergyofmixingofthesystembecomespositive,thethermodynamicdrivingforceforphaseseparationisgenerated.

Figure23-1.Physicalvs.chemicalcooling.

Inrealexperimentalsystems,poorsolventsoftheoligomers,severalkindsofwater-solublepolymers,andcationicornonionicsurfactantscanbeusedasanadditivecomponenttoinducethephaseseparationinthecourseofasol–gelreaction.Typicalexamplesfollow:

(a)Low-waterhydrolysisoftetraalkoxysilaneoralkyltrialkoxysilane

Whenhydrolyzedwithunderstoichiometricamountofwater(H2O/Si<2and1.5inthecasesoftetraalkoxysilaneandalkyltrialkoxysilane,respectively),thesiloxaneoligomersretainaconsiderableamountofunreactedalkoxygroups.Theseoligomerswithrelativelylowpolaritytendtophaseseparateagainstahighlypolarsolventmixture.Additionofanextremelyhighconcentrationofmineralacidorformamideispreferabletoinducephaseseparationinthesolutionderivedfromtetraalkoxysilanes(Kajietal.,1993).Withalkyltrialkoxysilanes,thegeneratedoligomershaveinherenthydrophobicgroupsandthusexhibithigherphaseseparationtendencyevenagainstthemixtureofwaterandalcoholwithadiluteacidcatalyst.

Aseriesofexceptionhasbeenfoundrecentlywithbridgedalkoxysilanes.Bis(trialkoxysilyl)alkaneswithC6orC8bridgingalkylenechainstypicallyphaseseparateagainst50–70foldmolaramountofwaterrelativetosiliconunderacidicconditions(Nakanishietal.,2002).Relativelylongalkylenechainsburiedinthesiloxanenetworkonlymoderatelycontributetoenhancethephaseseparationtendencyofthepolymerizingoligomers.

(b)High-waterhydrolysisoftetraalkoxysilaneinthepresenceofweakly-interactingadditives

Withasufficientamountofwater,almostallthealkoxygroupsarehydolyzedintosilanolgroups.Thepolarityofresultantsiloxaneoligomersishighenoughtobedissolvedinalcohol–watersolventmixturecontainingioniccatalysts.Anadditionofwater-solublepolymersuchaspoly(acrylicacid)orpoly(sodiump-styrenesulfonate)tothissystemcaninducethephaseseparationmainlybasedontheincompatibilitybetweenthepolymerandsiloxaneoligomers(NakanishiandSoga,1991,1992).Theaddedpolymerispreferentiallydistributedtothephasecontainingminoramountofsiloxaneoligomers,andthusconstitutesthe“fluidphase”incontrasttothe“gelphase”richinsiloxaneoligomers.Inthiscase,theadditivecomponentjustplaysanassistingroletoinducethephaseseparationtoformmicrometer-rangeheterogeneousstructures.

(c)High-Waterhydrolysisoftetraalkoxysilaneoralkylene-bridgedalkoxysilaneinthepresenceofhydrogen-bondingadditives

Severalsurfactantsandwater-solublepolymersareknowntoexhibitstronghydrogen-bondinginteractionbetweensilanolgroupsonthesurfacesofsilicacolloidsandinsiloxaneoligomers.Amongothers,polyoxyethylenechainsspecificallyformstronghydrogenbondswithsilanolsbytheiretheroxygens.Whenalkoxysilanesundergohydrolysis/polycondensationinthepresenceofthepoly(ethyleneoxide)orsurfactantcontainingpolyoxyethyleneunits,thepolymerorsurfactantformshydrogen-bondedamorphouscomplexassoonassufficientamountsofcontinuoussilanolsitesaregeneratedasaresultofpolycondensationofhydrolyzedalkoxysilanesinthesolution(Fig.23-2).Inthecasethatsurfactantsandpolymerscoversilanolssostronglythatanyfurtherpolycondensationisinhibitedbytheadsorbedmolecules,onlylowmolecularweightoligomerswillsegregatetoformadispersed,non-gellingphase.ByanappropriatechoiceoftheHLB(hydrophile–lypophilebalance)valueorthemolecularweight,ontheotherhand,thephaseseparationcanbeconcurrentlyinducedwiththehomogeneoussol–geltransitionofthereactionsystem(Nakanishietal.,1994).Beingdifferentfromthecaseswithweakly-interactingpolymers,mostoftheadditivesurfactantsorpolymersaredistributedtothephasetowhichmajorityofthesiloxaneoligomersarealsodistributed,andformagelphasetogether.Thefluidphaseisthencomposedmainlyofthesolventmixture.

Figure23-2.Hydrogen-bondingofPEOchainsonsurfacesilanols.

Thesystemcontaininghydrogen-bondingadditiveshasanadvantageincontrollingtheporestructureoftheresultantgels.Aswillbeexplainedindetailbelow,thesizeofthepores(tobemoreexact,thesizeofseparatedphasedomains)primarilydependsonthephaseseparationtendencyofthepolymerizingsiloxaneoligomersolution.Theporevolumeisdeterminedmainlybythevolumefractionofthefluidphase,andthusroughlyproportionaltotheconcentrationofwaterandsolventinthestartingcomposition.Theporesizeandtheporevolumeofagelsamplecanbeindependentlycontrolledbyadjustingtheconcentrationsoftheadditiveandthesolvent,respectively.Inthesystem(b)describedabove,thephaseseparationtendencyandthevolumefractionofthepore-formingphaseareinterdependent,whichmakesitdifficulttodesignawidevarietyofporestructure.

(d)Morphologydevelopmentbyspinodaldecomposition

Inaphasediagramwithamiscibilitywindow,thetwo-phaseregionisdividedintotwosub-regions.Oneisthatbetweenbinodalandspinodal,calledmetastableregion.Inthemetastableregion,anyinfinitesimalfluctuationofthecompositionisenergyconsuming,thatis,finiteactivationenergyisrequiredtodevelopphase-separateddomains.Thetypicalphaseseparationmechanisminthisregionisthe“nucleationandgrowth”wheredispersedsmallregionscallednucleigrowaccompaniedbyanadditionofconstituentsdiffusingfromthebulk(notyetseparated)regionsofthesystem.Thenaturalconsequenceofthismechanismisamorphologywith“dispersedA”and“matrixB”phasedomains(Fig.23-3).Theotherregionisthatwithinaspinodalline,calledunstableregion.Intheunstableregion,anyinfinitesimalfluctuationgainsenergysothatthefluctuationspontaneouslydevelopswithtimewithoutrequiringtheactivationenergy.Dependingmainlyonthedepthofquench(thedifferencebetweenthecriticaltemperatureandtheactuallyquenchedtemperature)andthemobilityoftheconstituents(moreprecisely,thatofdiffusingunits),onlyasingleFouriercomponentamongthevariousfluctuationwavelengthssurvivesanddominatesthecharacteristicsizeofthedomains.Acleardifferencecanbeseenbetweenthenucleationandgrowthmechanismthatthephasedomainshavenodistinctinterfaceintheinitialstagesofthephaseseparation.Thecontrastinchemicalcompositiondevelopscontinuouslywithtimeuntiltheequilibriumphasecompositionsarereached.Undercomparablevolumefractionsofconjugatephasedomainswithoutanisotropy,thesponge-likestructurecalledco-conti

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1