有机半导体材料.docx

上传人:b****8 文档编号:30430175 上传时间:2023-08-14 格式:DOCX 页数:8 大小:315.69KB
下载 相关 举报
有机半导体材料.docx_第1页
第1页 / 共8页
有机半导体材料.docx_第2页
第2页 / 共8页
有机半导体材料.docx_第3页
第3页 / 共8页
有机半导体材料.docx_第4页
第4页 / 共8页
有机半导体材料.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

有机半导体材料.docx

《有机半导体材料.docx》由会员分享,可在线阅读,更多相关《有机半导体材料.docx(8页珍藏版)》请在冰豆网上搜索。

有机半导体材料.docx

有机半导体材料

有机半导体材料

1有机半导体材料的分子特征

有机半导体材料与传统半导体材料的区别不言自明,即有机半导体材料都是由有机分子组成的。

有机半导体材料的分子中必须含有_键结构。

如图1所示,在碳-碳双键结构中,两个碳原子的pz轨道组成一对_轨道(_􀀀和_),其成键轨道(_􀀀)与反键轨道(_)的能级差远小于两个_轨道之间的能级差。

按照前线轨道理论,_􀀀轨道是最高填充轨道(HOMO),_是最低未填充轨道(LUMO)。

在有机半导体的研究中,这两个轨道可以与无机半导体材料中的价带和导带类比。

当HOMO能级上的电子被激发到LUMO能级上时,就会形成一对束缚在一起的空穴-电子对。

有机半导体材料的电学和电子学性能正是由这些激发态的空穴和电子决定的。

在有机半导体材料分子里,_键结构会扩展到相邻的许多个原子上。

根据分子结构单元的重复性,有机半导体材料可分为小分子型和高分子型两大类。

小分子型有机半导体材料的分子中没有呈链状交替存在的结构片断,通常只由一个比较大的_共轭体系构成。

常见的小分子型有机半导体材料有并五苯、三苯基胺、富勒烯、酞菁、苝衍生物和花菁等(如图2),常见的高分子型有机半导体材料则主要包括聚乙炔型、聚芳环型和共聚物型几大类,其中聚芳环型又包括聚苯、聚噻吩、聚苯胺、聚吡咯等类型(如图3)。

事实上,由于有机分子的无限可修饰性,有机半导体材料的结构类型可以说是无穷无尽的。

图2:

几种常见的小分子有机半导体材料:

(1)并五苯型,

(2)三苯基胺类,(3)富勒烯,(4)酞菁,(5)苝衍生物和(6)花菁类。

图3:

几种常见的高分子有机半导体材料:

(1)聚乙炔型,

(2)聚芳环型,(3)共聚物型。

2有机半导体材料中的载流子

我们知道无机半导体材料中的载流子只有电子和空穴两种,自由的电子和空穴分别在材料的导带和价带中传输。

相形之下,有机半导体材料中的载流子构成则要复杂得多。

首先,由于能稳定存在的有机半导体材料的能隙(即LUMO与HOMO的能级差)通常较大,且电子亲和势较低,大多数有机半导体材料是p型的,也就是说多数材料只能传导正电荷。

无机半导体材料中的正电荷(即空穴)是高度离域、可以自由移动的,而有机半导体材料中的正电荷所代表的则是有机分子失去一个电子(通常是HOMO能级上的电子)后呈现的氧化状态。

因此,在有机半导体材料中引入一个正电荷,必然导致有机分子构型的改变。

以结构最为简单的共轭聚合物——聚乙炔为例(如图4),由于其分子链是由碳碳单键(C-C)和碳碳双键(C=C)交替构成的,分子链上可以同时存在两种不同的分子构型,即图中的A相和B相,而这两相的能量是一样高的(也就是说,聚乙炔的两种基态是简并的)。

若聚乙炔分子链受到热激发,则链段的构型可以从A相克服扭转能垒转变成B相。

当A相和B相在同一条分子链上存在时,在其接合处就会形成一个“畴壁”(如图5)。

A想和B想之间的畴辟代表了一种被激发的能量状态,并且能在分子链上进行传递,我们把它定义为“孤子(Soliton)”。

孤子的形成,在聚乙炔的HOMO和LUMO能级之间引入了一个新的能级(如图6)。

对于中性的孤子来说,这个能级上有且只有一个电子,这个电子可以有两种不同的自旋状态;若孤子失去一个电子,则成为一个带正电荷的孤子(孤子能级上没有电子);若孤子得到一个额外的电子,则成为一个带负电荷的孤子(孤子能级上有两个电子)。

带电荷的孤子倾向于与一个电中性的孤子结合,形成一个“极化(Polaron)”。

在未掺杂(亦称为“本征态”)的聚乙炔里,只存在中性的孤子,没有电荷的载体,因此是一种绝缘体,不能导电。

日本科学家白川英树发现,对聚乙炔进行氧化掺杂(即加入一定量的化剂)之后,聚乙炔薄膜的电导率大为提高。

以碘掺杂为例:

[CH]n32xI2􀀀!

[CH]nxxI􀀀3

(1)

碘单质夺走了聚乙炔链上的电子,亦即在其分子链上引入了带正电荷的极化子。

碘掺杂的聚乙炔以极化子作为正电荷的载体(正电载流子),从而使聚乙炔由绝缘体转变成为半导体。

若分子的基态非简并,则载流子的构成更为复杂一些。

以聚噻吩为例(如图7),其基态包括两种能量不同的构型,分别称为“芳香式”和“菎式”。

芳香式结构的_电子共面性更好,因此能量更低些。

当聚噻吩分子失去一个电子,分子链上会形成一个正电自由基,同时一定链段的芳香式结构会转化为菎式(如图8);这样的正电自由基结构,亦称为“极化子”。

当聚噻吩分子失去两个电子,则分子链上会形成两个极化子;居于同一条分子链上的两个正电自由基是极不稳定的,它们会迅速结合在一起,形成一个带两个正电荷的结构,称为“双极化子”。

推广一下,极化子与双极化子就是大多数有机半导体材料中的主要载流子。

3有机半导体材料中的电传输

如前所述,无机半导体中的载流子是高度离域的,在外加电压的作用下会在连续的导带或者价带中定向移动。

而在有机半导体材料中,分子与分子之间仅有微弱的范德华力,载流子的离域程度通常仅限于一个分子之内。

只有在有机半导体的单晶材料中才会出现载流子在几个相邻分子之间离域的情况。

因此,在非晶态的有机半导体材料中,电荷在不同分子之间的传递要通过“跳跃(Hopping)”的方式完成。

跳跃传输的有效程度与相邻分子之间的_重叠程度有关,_重叠度越高,跳跃传输的速度越快。

很显然,跳跃传输远不如无机半导体中的带传输有效,所以有机半导体材料中的载流子迁移率通常很低,多数在10􀀀5cm2V􀀀1s􀀀1左右。

另外,无机半导体的载流子迁移率通常会随着温度的上升而下降,因为材料中的缺陷会随温度的升高而增加,从而增加载流子的复合几率。

而与此不同的是,非晶态有机半导体材料中的载流子迁移率会在一定范围办随着温度的增加而提高。

这也反映了有机半导体材料与无机半导体材料中载流子传输机理上的本质不同。

各个有机分子的共轭轨道,可以视为载流子的一个个束缚区域,而载流子的跳跃传输就是从一个束缚区跳入另一个束缚区,亦即先要逃脱一个束缚区的束缚,才能跳跃到另一个束缚区。

摆脱束缚需要一定的热激发,所以温度在一定范围内升高时,有机半导体中的载流子迁移率会有所上升。

此外,有机半导体材料中的载流子迁移率还与材料的掺杂程度有很大关系。

如前所述,有机半导体的掺杂,即在其中引入氧化剂或还原剂,用以形成极化子及双极化子等载流子。

有研究表明,掺杂物可以充当有机分子之间的桥梁,把一个共轭区域内的载流子快速地引到另一个共轭区域里。

因此,在多数情况下,适量的掺杂可以明显地提高有机半导体材料中的载流子迁移率。

4有机半导体材料的应用领域

相对于无机材料,有机材料的最重要优势是其近乎无限的可修饰性。

通过改变有机分子的分子构成及元素成分,有机材料的性能可以在很大范围内进行调整,也就更有机会充分接近实际应用的要求。

因此,在功能材料方面,近年已经有大量原先采用无机材料的应用领域转用了有机材料。

 

例如显示器,早期的CRT显示器是用电子束扫描荧光粉来成像的,所用的荧光粉都是无机材料(如Y2O3:

Eu,Y2O2S:

Eu等);而目前主流的液晶显示器中最主要的功能材料——液晶,则是典型的有机材料。

再如打印机及复印机的硒鼓,早期的硒鼓是硒材料一统江湖,而如今以有机分子作为光敏层的“硒鼓”已经占有相当大的市场份额。

当前大量采用有机半导体材料的主要有以下领域:

1.光盘。

当下主流的DVD光盘通常以花菁(显蓝绿色)及酞菁(显金黄色)为数字信息的载体。

这些有机半导体材料在激光照射下会改变分子构型,从而完成0和1的记录。

2.有机发光二极管,即OLED。

OLED以有机半导体异质结为基础,通过电子和空穴在异质结处的湮灭而发光。

OLED可以制成柔性的、大面积的显示器。

3.传感器。

对有机半导体材料进行掺杂或者去掺杂会极大地改变其电性质,这个特点可以利用在传感器上,因为有许多待检测的气体本身可以作为有机半导体材料的掺杂剂。

4.有机太阳能电池。

在能源领域的应用,将是有机半导体材料的最有意义的应用,这也是惟华光能的主营业务。

有机太阳能电池的工作原理与应用特点将在下一节中详述。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 企业管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1