风荷载取值.docx

上传人:b****8 文档编号:30411585 上传时间:2023-08-14 格式:DOCX 页数:11 大小:62.83KB
下载 相关 举报
风荷载取值.docx_第1页
第1页 / 共11页
风荷载取值.docx_第2页
第2页 / 共11页
风荷载取值.docx_第3页
第3页 / 共11页
风荷载取值.docx_第4页
第4页 / 共11页
风荷载取值.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

风荷载取值.docx

《风荷载取值.docx》由会员分享,可在线阅读,更多相关《风荷载取值.docx(11页珍藏版)》请在冰豆网上搜索。

风荷载取值.docx

风荷载取值

3.1.3风荷载之宇文皓月创作

建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算依照《荷载规范》第7章执行。

1、风荷载尺度值计算

垂直于建筑物主体结构概况上的风荷载尺度值WK,依照公式(3.1-2)计算:

βz——高度Z处的风振系数,主要是考虑风作用的不规则性,依照《荷载规范》7.4要求取值。

多层建筑,建筑物高度<30m,风振系数近似取1。

(1)风荷载体型系数µS

风荷载体型系数,不单与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般依照《荷载规

表3.1.10建筑物体型系数取值表

μs

建筑物体型示意

0.8

圆形平面建筑

正多边形或截角三角形平面建筑

n-多边形的边数

1.3

高宽比不大于4的矩形、方形、十字形平面建筑

1.4

①V形、Y形、弧形、双十字形平面建筑;

②L形、槽形和高宽比大于4的十字形平面建筑;

③高宽比大于4、长宽比不大于1.5的矩形、

鼓形平面建筑。

H-建筑物高度

范》7.3要求取值,表3.1.10中列出了经常使用体型建筑物的体型系数。

注1:

当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可依照《高层规程》中附录A采取、或由风洞试验确定。

注4:

当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。

一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,需要时宜通过风洞试验确定。

注3:

檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。

注4:

验算概况围护结构及其连接的强度时,应依照《荷载规范》7.3.3规定,采取局部风压力体型系数。

(2)风压高度变更系数µz

设置风压高度变更系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。

对于位于平坦或稍有起伏地形上的建筑物,其风压高度变更系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了经常使用风压高度变更系数的取值要求。

表3.1.11风压高度变更系数

离地面或海平面高度

(m)

地面粗糙度类别

A

B

C

D

5

10

15

20

1.17

1.38

1.52

1.63

1.00

1.00

1.14

1.25

0.74

0.74

0.74

0.84

0.62

0.62

0.62

0.62

30

40

50

60

1.80

1.92

2.03

2.12

1.42

1.56

1.67

1.77

1.00

1.13

1.25

1.35

0.62

0.73

0.84

0.93

附注:

对位于山区的建筑物,依照本表确定的风压高度变更系数必须考虑地形条件的修正,详《荷载规

范》7.2.2。

关于地面粗糙程度的分类:

A类:

近海海面、海岛、海岸、湖岸及沙漠地区;

B类:

田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;

C类:

有密集建筑群的城市市区;

D类:

有密集建筑群和且房屋较高的城市市区。

(3)基本风压值W0

基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为尺度确定的风压值,各地的基本风压可依照《荷载规范》附录D

中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表。

2、基本风压的取值年限

《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压尺度值,工程设计中根据建筑物的使用性质与功能要求,一般依照下列方法选用风压尺度值的取值年限:

①临时性建筑物:

取n=10年一遇的基本风压尺度值;

②一般的工业与民用建筑物:

取n=50年一遇的基本风压尺度值;

③特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):

表3.1.12浙江省主要城镇基本风压(kN/m2)取值参考表

城镇名称

海拔高度

(m)

基本风压(kN/m2)

n=10年

n=50年

n=100年

杭州市

41.7

0.30

0.45

0.50

临安县天目山

1505.9

0.55

0.70

0.80

平湖县乍浦

5.4

0.35

0.45

0.50

慈溪市

7.1

0.30

0.45

0.50

嵊泗

79.6

0.85

1.30

1.55

嵊泗县嵊山

124.6

0.95

1.50

1.75

舟山市

35.7

0.50

0.85

1.00

金华市

62.6

0.25

0.35

0.40

嵊县

104.3

0.25

0.40

0.50

宁波市

4.2

0.30

0.50

0.60

象山县石浦

128.4

0.75

1.20

1.40

衢洲市

66.9

0.25

0.35

0.40

丽水市

60.8

0.20

0.30

0.35

龙泉

198.4

0.20

0.30

0.35

临海市括苍山

1383.4

0.60

0.90

1.05

温州市

6.0

0.35

0.60

0.70

椒江市洪家

1.3

0.35

0.55

0.65

椒江市下大陈

86.2

0.90

1.40

1.65

玉环县坎门

95.9

0.70

1.20

1.45

瑞安市北麂

42.3

0.95

1.60

1.90

附注:

表中未列城镇的基本风压依照《荷载规范》附录D中的全国基本风压分布图查用。

n=100年一遇的基本风压尺度值;在没有100年一遇基本风压尺度值的地区,可近似将50年一遇的基本风压值尺度值乘以1.1(经验系数)以后采取。

3、关于风荷载作用的方向问题

建筑物受到的风荷载作用来自各个方向,风荷载的主要作用方向与建筑物所在地的风玫瑰图方向一致(全国主要城市风玫瑰图,可以查相应的建筑设计资料)。

工程设计中,一般依照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应。

对于抗侧力构件相互垂直安插的建筑物:

一般依照两个相互垂直的主轴方向来考虑风荷载的作用效应,详图3.1.3a所示。

图3.1.3a抗侧力构件垂直安插示意图图3.1.3b抗侧力构件多向安插示意图

对于抗侧力构件多向安插的建筑物:

一般依照抗侧力构件安插方向,沿着相互垂直的主轴方向次依考虑风荷载的作用效应,详图3.1.3b所示。

注意:

同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算。

4、风洞试验

《高层规程》3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载尺度值计算公式(3.1-2)中的相关计算参数有需要通过风洞试验来确定,以便较精确地计算建筑物受到的风荷载作用效应,确保建筑结构的抗风能力。

一般建筑物高度大于200m、或建筑物高度大于150m但存在下列情况之一时,宜采取风洞试验来确定建筑物的风荷载作用参数。

①平面形状不规则,立面形状复杂;

②立面开洞或连体建筑;

③规范或规程中没有给出体型系数的建筑物;

④周围地形或环境较复杂。

风洞试验通常由有试验能力和试验资质的高等院校、科研院所完成,依照一定比例制作的建筑物模型置于人工模拟的风环境中,模型上分歧部位埋设一定数量的电子测压孔,通过压力传感器输出电流信号、通过数据收集仪自动扫描记录并转为相关的数字信号,再经过一系列的计算机数据处理、模拟分析,可以得到建筑物受到的平均风压力和动摇风压力值,供设计采取。

多层建筑物,房屋高度小,风荷载作用影响较小,一般不做风洞试验。

5、梯度风

基本风压与风速有关,一般风速由地面为零沿高度方向依照曲线逐渐增大,直至距离地面某一高度处达到最大值,上层风速度受地面影响较小,风速较为稳定。

分歧的地概况粗糙度使风速沿高度增加的梯度(速率)分歧,详图3.1.4所示,风速变更的这种规律,称为梯度风。

图3.1.4风速随高度变更示意图

6、特殊情况下基本风压的取值

①当重现期为任意年限R时,相应风压值可依照公式(3.1-2a)进行近似计算:

式中:

XR——重现期为R年的风压值(kN/m2);

X10——重现期为10年的风压值(kN/m2);

X100——重现期为100年的风压值(kN/m2)。

②当城市或建设地点的基本风压值在“全国基本风压分布图”上没有给出时,可根据附近地区规定的基本风压或长期观测资料,通过气象或地形条件的对比分析确定。

在分析当地的年最大风速时,往往会遇到其实测风速的条件不符合基本风压规定的尺度条件,因而必须将实测的风速资料换算为尺度条件的风速资料,然后再进行分析。

情形一:

当实测风速的位置不是l0m高度时,尺度条件风速的换算

原则上应由气象台站根据分歧高度风速的对比观测资料,并考虑风速大小的影响,给出非尺度高度风速的换算系数,以确定尺度条件高度的风速资料。

当缺乏相应的观测资料时,可近似依照公式(3.1-2b)进行换算:

式中:

ν——尺度条件下l0m高度处、时距为10分钟的平均风速值(m/s);

νz——非尺度条件下z高度(m)处、时距为10分钟的平均风速值(m/s);

α——实测风速高度换算系数,可根据设计手册,近似按表3.1.13取值。

表3.1.13实测风速高度换算系数参考表

实际风速高度(m)

4

6

8

10

12

14

16

18

20

α

1.158

1.085

1.036

1

0.971

0.948

0.928

0.910

0.895

情形二:

当最大风速资料不是时距10分钟的平均风速时,尺度条件风速的换算

虽然世界上很多国家采取基本风压尺度值中的风速基本数据为10分钟时距的平均风速,但也有一些国家不是这样。

因此对某些国外工程需要依照我国规范设计时,或国内工程需要与国外某些设计资料进行对比时,会遇到非尺度时距最大风速的换算问题。

实际上时距10分钟的平均风速与其它非尺度时距的平均风速的比值是不确定的,表3.1.14给出了非尺度时距平均风速与时距10分钟平均风速的换算系数,需要时可依照公式(3.1-2c)做近似换算:

式中:

ν——时距为10分钟的平均风速值(m/s);

νt——时距为t分钟的平均风速值(m/s);

β——换算系数,可根据设计手册,近似按表3.1.14取用。

表3.1.14分歧时距与10分钟时距风速换算系数参考表

实际风

速时距

1

小时

10

分钟

5

分钟

2

分钟

1

分钟

0.5

分钟

20

秒钟

10

秒钟

5

秒钟

瞬时

β

0.94

1

1.07

1.16

1.20

1.26

1.28

1.35

1.39

1.5

情形三:

当已知风速重现期为T年时,尺度条件风压的换算

当已知10分钟时距平均风速最大值的重现期为T年时,其基本风压与重现期为50年的基本风压的关系,可依照公式(3.1-2d)进行简单换算:

式中:

W0——重现期为50年的基本风压值(kN/m2);

W——重现期为T年的基本风压值(kN/m2);

γ——换算系数,可根据设计手册,近似按表3.1.15取用。

表3.1.15分歧重现期与重现期为50年的基本风压的换算系数参考表

重现期为T年

5年

10年

15年

20年

30年

50年

100年

γ

0.629

0.736

0.799

0.846

0.914

1.0

1.124

③山区的基本风压

山区的基本风压应通过调查后确定,如无实际资料,可依照当地邻近空旷平坦地面的基本风压值,乘以一放大系数后采取。

任何情况下,山区的基本风压值不得小于0.3kN/m2。

7、围护结构的风荷载计算

计算围护结构上作用的风荷载值,必须考虑阵风的影响,依照公式(3.1-2e)进行:

WK——风荷载尺度值,单位kN/m2;

W0——基本风压值,单位kN/m2,取值要求同前;

βgz——高度Z处的阵风系数,依照《荷载规范》7.5要求取值;

µS——风荷载体型系数,依照《荷载规范》7.3.3要求取值。

对于檐沟、雨蓬、遮阳板等突出构件,风力作用垂直向上,风荷载体型系数为2;

µz——风压高度变更系数,取值要求同前。

8、玻璃幕墙的风荷载计算

玻璃幕墙作为围护结构的一种表示形式,在民用建筑中应用较多,其抗风设计必须满足围护结构风荷载尺度值的计算要求。

由于玻璃幕墙单块受荷面积较小,根据《玻璃幕墙工程技术规范》(JGJ102-96)规定,垂直于玻璃幕墙概况上的风荷载尺度值,可近似依照公式(3.1-2f)计算:

公式中有关高度变更系数µz、基本风压W0的计算取值要求同前,对于体型系数µS的取值要求如下:

竖直幕墙外概况依照±1.5取用;斜玻璃幕墙可根据实际情况依照《荷载规范》要求取用;当建筑物进行了风洞试验时,直接根据风洞试验结果确定。

任何情况下,设计玻璃幕墙用风荷载尺度值Wk不得小于1.0kN/m2。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1