微波滤波器课程设计.docx

上传人:b****8 文档编号:30407719 上传时间:2023-08-14 格式:DOCX 页数:25 大小:587.28KB
下载 相关 举报
微波滤波器课程设计.docx_第1页
第1页 / 共25页
微波滤波器课程设计.docx_第2页
第2页 / 共25页
微波滤波器课程设计.docx_第3页
第3页 / 共25页
微波滤波器课程设计.docx_第4页
第4页 / 共25页
微波滤波器课程设计.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

微波滤波器课程设计.docx

《微波滤波器课程设计.docx》由会员分享,可在线阅读,更多相关《微波滤波器课程设计.docx(25页珍藏版)》请在冰豆网上搜索。

微波滤波器课程设计.docx

微波滤波器课程设计

湖南工业大学

课程设计

资料袋

计算机学院(系、部)2016~2017学年第二学期

课程名称微波通信指导教师职称.

学生姓名专业班级学号.

题目微波滤波器设计及其测量.

成绩起止日期2017年4月25日~2017年5月7日

目录清单

序号

材料名称

资料数量

备注

1

课程设计任务书

1

2

课程设计说明书

1

3

课程设计图纸

4

5

6

 

课程设计任务书

2016—2017学年第二学期

计算机学院(系、部)通信工程专业班级

课程名称:

微波通信.

设计题目:

微波滤波器设计及其测量.

完成期限:

自2017年4月25日至2017年5月7日共1周

设计内容与任务

1)设计低通和带通滤波器的参数

2)测试低通和带通滤波器的工作频率

3)对所设计的滤波器进行分析

4)掌握设计相关的仿真软件

5)设计总结,撰写报告

 

起止日期

工作内容

4.25--4.28

复习相关理论、分析与设计系统

4.29--5.3

滤波器的实现

5.4--5.7

测量数据并完成课程设计报告

1、王新稳.《微波技术与天线》.电子工业出版社。

2、吴万春.《现代微波滤波器的结构与设计》.科学出版社。

3、田加胜.《微波技术基础》.华中科技大学出版社。

4、RichardJ.Cameron、ChandraM.Kudsia、RaafatR.Mansour.

《通信系统微波滤波器——基础设计与应用》.电子工业出版社

指导教师(签字):

年月日

系(教研室)主任(签字):

年月日

(微波通信)

设计说明书

微波滤波器设计及其测量

起止日期:

2017-4.25至2017-5.7日

 

学生姓名

班级

学号

成绩

指导教师(签字)

计算机学院(部)

2017年5月7日

 

课题名称

微波滤波器设计及其测量

人数

组长

同组人员

 

设计内容与任务

1.了解基本低通及带通滤波器之设计方法。

2.了解常见经典的微波滤波器。

3.利用实验模组实际测量以了解滤波器的特性。

4.学会使用微波软件对低通和高通滤波器的设计和仿真,并分析结果。

 

具体任务

XXX到图书馆查询图文资料和利用网络查找微波滤波器相关的资料

XXX利用微波软件完成切比雪夫微波低通带通滤波器的设计

XXX利用硬件进行数据的测量并对课程设计进行总结

时间安排与完成情况

4.25--4.28复习相关理论、分析与设计系统

4.29--5.3滤波器的实现

5.4--5.7测量数据并完成课程设计报告

 

一、设计目的

1.了解基本低通及带通滤波器之设计方法。

2.利用实验模组实际测量以了解滤波器的特性。

3.学会使用微波软件对低通和高通滤波器的设计和仿真,并分析结果。

二、预习内容

1.熟悉滤波器的相关原理等理论知识。

2.熟悉滤波器设计的相关理论知识。

三、设计所用设备

项次

设备名称

数量

备注

1

扫频仪

1套

亦可用网络分析仪

2

示波器及同轴微波检波器

1组

3

同轴腔带通滤波器

1组

4

50ΩBNC连接线

2条

5

1MΩBNC连接线

2条

6

微波软件RFSim99软件

1套

微波软件

四、设计理论分析

1、滤波器的种类

以信号被滤掉的频率范围来区分,可分为低通(Lowpass)、高通(Highpass)、带通(Bandpass)及带阻(Bandstop)四种。

若以滤波器的频率响应来分,则常见的有巴特渥兹型(Butter-worth)、切比雪夫I型(TchebeshevType-I)、切比雪夫Ⅱ型(TchebeshevType-Ⅱ)及椭圆型(Elliptic)等,若按使用元件来分,则可分为有源型及无源型两类。

其中无源型又可分为L-C型(L-CLumped)及传输线型(Transmissionline)。

而传输线型以其结构不同又可分为平行耦合型(ParallelCoupled)、交叉指型(Interdigital)、梳型(Comb-line)及发针型(Hairpin-line)等等不同结构。

本实验以较常用的巴特渥兹型(Butter-worth)、切比雪夫I型(TchebeshevType-I)为例,说明其设计方法。

首先了解Butter-worth及TchebeshevType-I低通滤波器的响应图。

(1)Butterowrth

(2)TchebyshevType

其中

rp(dB)——通带纹波(passbandripple),

N——元件级数数(orderofelementforlowpassprototype)

ω——截通比(stopband-to-passbandratio),

ω=fc/fx(forlowpass)

=BWp/BWx(forbandpass)

其中

fc——-3dB截止频率(3dBcutofffrequency)

fx——截止频率(stopbandfrequency)

BWp——通带频宽(passbandbandwidth)

BWx——截止频宽(stopbandbandwidth)

Tn()为柴比雪夫多项式(Tchebysheypolynomals)

其中

图1(a)(b)即是三级巴特渥兹型B(3,ω)与三种不同纹波和级数的切比雪夫型的截通比响应的比较图。

理论上,在通带内巴特渥兹型是无衰减的(Maximunflat),而切比雪夫型较同级数的巴特渥兹型有较大的衰减量。

实际应用上,除非在通带内要求必须是平坦响应(flatresponse)外,大多允许通带内少量衰减,因而一般采用切比雪夫型以获得较大的截通效应或减少元件级数。

巴特渥兹型与切比雪夫型通带响应比较图

巴特渥兹型与切比雪夫型截通带响应比较图

其中:

B(3,ω)——三级巴特渥兹型的衰减响应

T(0.25,3,ω)——纹波为0.25dB的三级切比雪夫型的衰减响应

T(0.5,5,ω)——纹波为0.5dB的五级切比雪夫型的衰减响应

T(1,7,ω)——指纹波为1dB的七级切比雪夫型的衰减响应

2、低通滤波器设计方法:

(1)巴特渥兹型(ButterworthLowpassFilter)

步骤一:

确定参数。

电路阻抗(Impedance):

Z0(ohm)

截止频率(CutoffFrequency):

fc(Hz)

截通频率(StopbandFrequency):

fc(Hz)

通带衰减量

阻带衰减量

步骤二:

计算元件级数(Orderofelements,N):

,N取最接近的整数。

步骤三:

计算原型元件值(PrototypeElementValues,gK):

步骤四:

先选择串L并C型或并C串L型,再根据公式计算实际电感电容值:

(a)串L并C型

(b)并C串L型

(2)切比雪夫I型(TchebyshevType-ILowpassFilter)

步骤一:

确定参数。

电路阻抗(Impedance):

Zo(ohm)

截止频率(CutoffFrequency):

fc(Hz)

阻带频率(StopbandFrequency):

fx(Hz)

通带纹波量(MaximumRippleatpassband):

rp(dB)

阻带衰减量(MinimumAttenuationatstopband):

Ax(dB)

步骤二:

计算元件级数(Orderofelements,N).

,其中

N取最接近的奇整数。

采用奇整数是为了避免切比雪夫低通原型在偶数级时,其输入与输出阻抗不相等。

步骤三:

计算原型元件值(PrototypeElementValues,gk):

其中

步骤四:

先选择串L并C型或并C串L型,再依据公式计算实际电感电容值。

(a)串L并C型

(b)并C串L型

(3)带通滤波器设计方法:

步骤一:

确定参数。

电路阻抗(Impedance):

Zo(ohm)

上通带频率(upperpassbandedgefrequency):

fPU(Hz)

下通带频率(lowerpassbandedgefrequency):

fPL(Hz)

上截止频率(upperstopbandedgefrequency):

fXU(Hz)

下截止频率(lowerstopbandedgefrequency):

fXL(Hz)

通带衰减量(MaximumAttenuationatpassband):

AP(dB)

阻带衰减量(MinimumAttenuationatstopband):

AX(dB)

步骤二:

计算元件级数(Orderofelements,N)。

其中

(a)巴特渥兹型(Butter-worth)

,N取最接近的整数。

.

(b)切比雪夫I型(TchebeshevType)

,N取最接近的奇整数

步骤三:

计算低通原型元件值(PrototypeElementValues,gk)

其公式如前所示。

并选择串L并C型或并C串L型,计算出实际电容(Cp)、(Ls)值。

(a)串L并C型

(b)并C串L型

步骤四:

计算带通原型元件变换值。

由低通原型实际元件值依据下列变换对照表计算出带通原型实际元件值,并用带通原型变换电器取代低通原型电路元件,以完成带通电路结构。

图1(a)N=5串L并C型低通滤波器电路原型

 

图1(b)N=5并C串L型低通滤波器电路原型

图1(c)N=5串L并C型带通滤波器电路原型

 

 

图2

为了描述滤波器的滤波特性,一般常用的是插入衰减随频率变化的曲线。

插入衰减的定义为:

式中Pi为滤波器所接信号源的最大输出功率,PL为滤波器的负载吸收功率。

微波滤波器的主要技术指标有:

工作频带的中心频率、带宽、通带内允许的最大衰减、阻带内允许的最小衰减、阻带向通带过渡时的陡度和通带内群时延的变化等。

滤波器的结构是:

在一特性阻抗为Z0的传输线上,每隔/4的距离就并接一个电抗性元件(它的实际结构可以是短路支线、膜片或螺钉),设其阻抗分别为Z1、Z2、Z3、Z4、Z5和Z6,RL是滤波器所接的负载。

电容加载型同轴谐振腔电容加载型同轴谐振腔如图3所示。

 

图3

谐振条件:

 

满足谐振条件的C值由下式确定

如果将缝隙电场近似看作均匀分布,则式中C可按平板电容公式计算

五、测量方框图

 

图5

六、硬件测量

1、对于低通滤波器的S11及S21测量以了解LC型低通滤波器电路的特性;对于带通滤波器的S11及S21测量以了解LC型带通滤波器电路的特性。

2、测量同轴腔滤波器的以下参数

上通带频率fPU(Hz)下截止频率fXL(Hz)

下通带频率fPL(Hz)通带衰减量AP(dB)

上截止频率fXU(Hz)阻带衰减量AX(dB)

3、测量步骤:

将示波器打到X-Y挡,扫频仪扫瞄输出接示波器的X输入作为水平频率线。

将扫频仪射频输出接三同轴腔终端电容加载带通滤波器,中心频率为1500MHz。

滤波器输出接微波同轴检波器,然后接到示波器Y轴挡。

将扫频仪扫瞄带宽打到200MHz,带通滤波器带宽为20MHz,用扫频仪Maker频标观查测量上截止频率,下截止频率fXL(Hz),下通带频率fPL(Hz)、阻带衰减量AX(dB)等。

可用起子同时调节三同轴腔终端电容加载带通滤波器的中心频率和通频带。

通带衰减量AP(dB)的测量,去掉待测三同轴腔终端电容加载带通滤波器,直接将扫

频仪输出接微波同轴检波器,到示波器观查前后两种情况下的电平差别,再调节扫频仪输出使两种情况示波器指示相同,记下两次的电平差,可测出带内查损。

其它指标测量方法同前。

4、硬件测量的结果建议如下为合格:

RF2KM6-1AMOD-6A(DC-50MHZ)S11≤-20dB

S21≥-1.5DB@≤50MHZ

MOD-6B(PASSBAND)S11≤10dB@210MHZ

(PASSBAND)RecordFplS21=-3.0dB

RecordFphS21=-3.0dB

(STOPBAND)RecordFxlAttn.=-18dB

FxhAttn.=-18dB

5、微波系统实验箱简图(接收设备)

图6

七、附加知识

经典原型滤波器有:

最大平坦滤波器(巴特沃斯低通原型滤波器),切比雪夫滤波器,椭圆函数滤波器,奇数阶椭圆函数滤波器,偶数阶椭圆函数滤波器,包含传输零点的最大平坦通带的滤波器,线性相位滤波器等。

在此只列举两例说明。

1、最大平坦滤波器

巴特沃斯低通滤波器又叫最大平坦低通滤波器,它的原型滤波器函数为

其对应的频率响应曲线如图7所示n为元件数目,阶数n由带外衰减决定。

幅度因子

是由通带内最大衰减

所决定的,通常选择为3dB即:

而元件数n可由带外最小衰减

确定,即

则滤波器阶数n可以用下式来确定,即

式中[]表示取整。

,则

可以近似表示为:

因此,在阻带频率上,n越大,阻带衰减越大;而

越小,阻带衰减则越小。

图7

2、切比雪夫滤波器

切比雪夫低通原型滤波器函数为:

其中,

是n阶第一类切比雪夫多项式,即

由上式可以看出

=0~1之间是余弦函数,在0~1之间的衰减是一个余弦曲线的等波纹变化,他的最大值为

,即

,于是

时,

是一个随

增大而单调增加的双曲余弦函数。

所以其阻带区域的衰减特性也是随

增大而单调增加。

设在阻带频率

上,阻带衰减为

,则有:

由此可求得阻抗元件数目n为:

通过与巴特沃斯原型比较可以知道,当

的值都一样时,切比雪夫响应的阻带衰减比巴特沃斯响应的阻带衰减大,这就说明切比雪夫低原型通滤波器在阻带衰减上的效果要好于巴特沃斯低原型通滤波器。

已知

和n后,应用与巴特沃斯网络类似的方法,可以得出对应的归一化元件值:

其中

其衰减特性响应曲线如图8所示

图8

八、实例分析

设计一个切比雪夫微波低通滤波器,技术指标为:

截止频率

=2.2GHz,在通带内最大波纹

=0.2dB,

小于-16dB;在阻带频率

=4GHz处,阻带衰减

不小于30dB。

输入、输出端特性阻抗

=50Ohm。

1.确定原型滤波器

启动软件中Wizard模块的AWRFilterSynthesisWizard(AMR滤波器综合向导)功能,输入各项技术指标,即自动生成原型滤波器的原理图。

具体电路如图9所示:

图9

2、计算滤波器的实际尺寸

(1)微带线结构

①高阻抗线

先计算高阻抗线的宽度。

已知条件:

,H=800um,T=10um,阻抗

,计算得W,

再计算高阻抗线的长度:

②低阻抗线

先计算低阻抗线的宽度。

已知条件:

,H=800um,T=10um,阻抗

,计算得W,

再计算低阻抗线的长度:

得到各个参数后,即可得到微带线结构滤波器原理图:

图10

3、实验数据记录

(1)确定原型滤波器

表1原型滤波器参数

元件ID

C1(pF)

C1(pF)

C1(pF)

L1(nH)

L2(nH)

元件变量

Ca

Cb

Ca

L0

L0

优化值

1.664

2.88

1.664

4.939

4.939

图11原形滤波器未经过优化

图12原形滤波器优化后

优化后数据:

Ca=1.664,Cb=2.88,L0=4.939。

(2)计算滤波器的实际尺寸

表2微带线结构

参数

W(um)

Ere

lL1、lL2(um)

lC1、lC3(um)

lC2(um)

高阻抗线

93.1386

5.391

6016.9193

 

 

低阻抗线

8433.58

7.837

 

1783.198

3086.305

图13优化前的图像

图14优化后的测量图

4、结果分析

首先对原型滤波器进行仿真结果分析,图3中,当f<2.2GHz时,

<-16dB,

=-0.11dB>-0.2dB;f>4GHz时,

=-31.19dB<-30dB,其仿真结果基本符合要求。

而在自行绘制的原理图中,即图4z中,我们可以清楚地看到,其实际指标与所要求的指标均有较大差距,当f<2.2GHz时,

>-16dB,

=-0.5188dB<-0.2dB;当f>4GHz时,

=-28.48dB>-30dB,也就是说,在误差允许的范围内,结果成立。

九、总结与心得

这次的课程设计,我去图书馆查找了相关的文献,对微波技术有了更为深入的了解,从之前电磁场课程上的抽象概念到实验中较为具体的实际电路分析。

自己对其中涉及到的概念都有了更加清楚的了解。

虽然我在此次课程设计后,对微波电路和微波传输有一定感性的理性认识。

但仍然有不足之处,虽然知道这部分实验是干什么的,但是理论知识还没学过,理论计算时不知所云。

总的来说,这次设计让我受益匪浅。

在以后的学习工作中,我认为自己还需要加强动手能力和理解能力,来弥补自己的欠缺。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 金融投资

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1