暖通专业英语论文.docx
《暖通专业英语论文.docx》由会员分享,可在线阅读,更多相关《暖通专业英语论文.docx(23页珍藏版)》请在冰豆网上搜索。
暖通专业英语论文
JournalofHeatTransfer,Vol.125,No.2,pp.349–355,April2003
©2003ASME.Allrightsreserved.
Up:
IssueTableofContents
Goto:
PreviousArticle|NextArticle
Otherformats:
HTML(smallerfiles)|PDF(297kB)
TheEffectsofAirInfiltrationonaLargeFlatHeatPipeatHorizontalandVerticalOrientations
M.Cerza
B.Boughey
USNavalAcademy,MechanicalEngineeringDepartment,Annapolis,MD21402
Received:
July12,2001;revised:
May13,2002
Inthesatelliteorenergyconversionindustriesflatheatpipesmaybeutilizedtotransferheattothethermalsink.Inthisinvestigation,alargeflatheatpipe,1.22m×0.305m×0.0127m,fabricatedfrom50milMonel400metalsheetsandMonel400screenswasvideographedathorizontalandverticalorientationswithaninfraredvideocamera.Theheatpipeevaporatorsectionconsistedofa0.305m×0.305marea(oneheatedsideonly)whilethesideoppositetheheatedsectionwasinsulated.Theremainingareaoftheheatpipeservedasthecondenser.Inthehorizontalorientationtheheatedsectionwasonthebottom.Intheverticalorientationtheevaporatorwasalignedbelowthecondenser.Thesequenceofphotographsdepictsheatinputsrangingfrom200Wto800W,andtheeffectofairinfiltrationonheatpipeoperationforbothorientations.Forthehorizontalorientation,theairisseentorecedetowardsthesmallfillpipeastheheatinputisincreased.Fortheverticalorientation,theairandwatervaporexhibitabuoyantinteractionwiththeresultthattheairpresenceinhibitsheattransferbyrenderingsectionsofthecondensersurfaceineffective.Theeffectsdepictedinthispapersetthestageforfutureanalyticalandexperimentalworkinflatheatpipeoperationforbothnormalandvariableconductancemodes.
ContributedbytheHeatTransferDivisionforpublicationintheJOURNALOFHEATTRANSFER.ManuscriptreceivedbytheHeatTransferDivisionJuly12,2001;revisionreceivedMay13,2002.AssociateEditor:
G.P.Peterson.
Contents
∙Introduction
∙FlatHeatPipeFabrication
∙ExperimentalInvestigation
∙ExperimentalResultsandDiscussion
∙Infrared(IR)VideographicResults
oA. HorizontalOrientation
oB. VerticalOrientation
∙Conclusions
∙Acknowledgment
∙Nomenclature
∙REFERENCES
∙FIGURES
Introduction
Figure1depictsaconceptualthermophotovoltaic(TPV)energyconversionsystemutilizingflatheatpipes.Combustiongasesfromaheatsourcesuchasagasturbinecombustorflowthroughchannelsonwhichheatpipesaremounted.Thesehotsideheatpipesserveasemittersurfaces.Acrossfromthehotsideheatpipes,TPVcellscanbemountedtocoldsideheatpipeswhichareheatpipesincontactwiththethermalsink.AnisothermalemittingsurfaceisneededinTPVenergyconversionsystemsbecausethevoltageoutputsoftheTPVcellsareverysensitivetothewavelengthbandwidthoftheemittingsurface.Theemitter'swavelengthbandwidthisafunctionoftemperature.Onthecoldside,theTPVcellscouldutilizeaflatheatpipe,butthisislesscritical.Flatheatpipesarenotnewtotheindustry,severalcompanieshavedesignedthemforspaceorcomputerapplications[1][2][3][4].
Figure1.
Flatheatpipesaresimilartocylindricalheatpipes.Theonlyrealdifferencebetweenthetwoisgeometrical.Whilethismayseemaminordifference,itpresentsmanychallengesfromanengineeringstandpoint.Typically,heatpipesareusedtotransferquantitiesofheatacrossadistancewithonlyaslighttemperaturelossfromendtoend.Thecylindricaldesignworkswelltoservethispurpose.However,whendesigninganemitterforaTPVenergyconversionsystem,itisadvantageoustohavealargesurfaceareatovolumeratioinordertomaximizethepowerdensityofthesystem.Aflatheatpipewasconceivedforthispurpose.Flatheatpipesalsohavedifferentinternalflowandstructuraldesignconsiderationsthanthoseofcylindricalheatpipes.
Flowpropertiesincylindersaredifferentfromthoseinrectangulargeometriessuchasflatplatesand/orboxes.Theflowofathinfilmthroughaflatwick(suchasintheliquidreturnpathofaflatheatpipe)isnotthesameastheflowofacylindricalcircumferentialfilm.Also,vaporflowthroughacylindricalspacediffersfromvaporflowthrougharectangularcrosssection.Theflowgeometricaldifferencescanalterthesteady-statelimitationsinflatheatpipedesign.
Thelimitmostaffectedinthedesignofamoderatetemperature(100°C)flatheatpipeutilizingwaterastheworkingfluidisthecapillarylimit.Thecapillarylimitinvolvestheabilityofthewicktodevelopthenecessarypumpingheadtoovercomethevaporandliquidpressurelossesastheworkingfluidcirculatesthroughtheheatpipe.
Inthisinvestigation,itwasdesiredtoqualitativelyexaminetheeffectsofwhatwouldhappenifairinfiltratedahermeticallysealedflatheatpipecontainingonlywater.Inorderforaflatheatpipetowithstandpressuredifferencesacrossitsflatsurfaces,theflatsurfacestructureneedstobesupported.Monelpinswereusedassupportstructuresinthisflatheatpipedesign.Thesepinswereweldedtothesheetmetalsurfaces,andthewelds,shouldtheycrack,wouldbeasourceforairinfiltrationforaheatpipecontainingwaterastheworkingfluidandoperatingbelow100°Cinanatmosphericenvironment.
Itshouldbepointedoutthatthisflatheatpipewasnotdesignedasavariableconductanceorgasloadedheatpipe.Therewasnononcondensablegasreservoiratthecondenserend,however,therewasashort5cminlength,18mmindiameterfillpipeattachedtothecondenserend.Inagasloadedvariableconductanceheatpipe(VCHP),Fig.2,areservoirwhichcontainsaamountofanon-condensablegasisaddedtotheheatpipecondenserend.Marcus[5],andMarcusandFleischman[6]giveanexcellentreviewofasimplifiedVCHP.AprimarygoalforaVCHPoperatingwithaconstantheatsinktemperatureistoachieveasteadyinternaloperatingtemperatureatvaryingheatinputconditions.Thisisaccomplishedforincreasingevaporatorheatinputbytheworkingfluidvaporcompressingthenoncondensablegastowardsthereservoir,thus,lengtheningtheactivecondenserlength.Thecondenserlengththatcontainsthegasessentiallyprohibitsheatrejectionfromthatportionoftheheatpipecondenser.Withproperdesign,thisincreaseinheatpipecondenserareawithincreasingheatinputcanachieveanearlyisothermalvaporoperatingcondition.Generally,thiscallsforthegasreservoirvolumetobemuchlargerthanthecondenservolume.Inthisinvestigation,theratioofthefillpipevolumetothecondenservolumewas0.002.Soifairinfiltratestheheatpipe,itwillnotbehaveasatraditionalVCHP,i.e.,foranincreasingheatinput,ariseinthisheatpipe'soperatingtemperatureisexpected.
Figure2.
SeveralinvestigatorshaveexaminedtheeffectsofnoncondensablegaslevelsonVCHPoperation.ThesehavebeenpredominatelyforcylindricalVCHPs.Kobayashietal.[7]haveconductedanexperimentalandanalyticalstudytoexaminetheflowfieldbehaviorofthevapor/non-condensablegasmixture.Theydeterminedthatgravityandnoncondensablegaslevelhadastrongeffectonthelocationandprofileofthegas/vaporinterfacelayer.PetersonandTien[8]examinedthemixeddoublediffusiveconvectioningasloadedheatpipesandtwo-phasethermosyphons.Theyshowedthattemperatureandconcentrationgradientscanredistributethegaswithinthecondenser.Thisredistribution,however,didnotgreatlyaltertheoverallcondenserheattransfer.Petersonetal.[9]alsoshowedthatdoublediffusiveconvectionchangesthenon-condensablegasflowstructureastheRayleighnumberisincreased.
Theheatpipeemployedinthisstudywasaverylargeflatheatpipesinceintheenergyconversionindustrylargesurfaceareasarerequiredtocoollargepowerproducingdevices.Initially,asmallamountofairwasloadedintotheheatpipe.Anattemptwasmadetocomparetheperformanceforthisairloadedheatpipetoonewithoutair,butunfortunately,airwasbelievedtohaveinfiltratedthesecondcase.Thisinvestigationalsopresentstheuseofinfraredvideographyasadiagnosticmeasurementtooltorecordtheexternalsurfacetemperaturesoftheheatpipe'scondenserregionandtoinferwhatwasinternallyhappeningbetweentheairandwatervaporinthecondenserend.Theprimaryfocusofthispaperisonthequalitativeeffectsofairinfiltrationinalarge,flatheatpipe.
FlatHeatPipeFabrication
Aflatheatpipe,1.22m×0.305m×0.0127m,wasfabricatedfrom50milMonelR400metalsheetsandMonelR400screens,[10][11].Theheatpipewasdesignedtoutilizewaterastheworkingfluidinanoperationaltemperaturerangeof25°Cto130°C.TwolayersofMonelscreenswereused,40meshand120mesh.Thepurposeofthetwodifferentscreensizeswastodesignawickofvaryingpermeability.
Longcopperbarswithfineradiusedgeswereutilizedtofacilitatebendingtheheatpipetotherequireddimensions.Thetwolayersofscreenwerethenplacedontopofthevessel.The120meshscreenwasthenplacedonthetopofthe40meshscreentoaidinthedevelopmentofthecapillarypumpingheadofthisscreenwick.Thescreenwasthentack-weldedtothevesselwallinregularintervalsbetweenthepinspacerlocations.TheMonelsheetsandscreenswerethenpunched,makingholesinthelocationswherethesupportpinsweretobeTIGwelded.The6.35mmdiameterpinswerethencuttotheproperlength,milled,anddeburredtofitintothenecessaryspace.Figure3depictsasectionoftheMonelsheets,screensandpins(Boughey,1999).ThegapsizebetweentheMonelsheetswasappr