秋盐田河中心学校八年级数学学科教师集体备课教案教师袁贵齐.docx
《秋盐田河中心学校八年级数学学科教师集体备课教案教师袁贵齐.docx》由会员分享,可在线阅读,更多相关《秋盐田河中心学校八年级数学学科教师集体备课教案教师袁贵齐.docx(30页珍藏版)》请在冰豆网上搜索。
秋盐田河中心学校八年级数学学科教师集体备课教案教师袁贵齐
八年级数学学科秋季学期备课人袁贵齐
课时备课
第1课时
课题:
11.1全等三角形
教学目标
1了解全等形及全等三角形的的概念;
2理解全等三角形的性质.
重点难点
重点:
探究全等三角形的性质
难点:
掌握两个全等三角形的对应边,对应角
教
学
过
程
一.引入:
观察下列图案,指出这些图案中中形状与大小相同的图形
问题:
你还能举出生活中一些实际例子吗?
二.新课:
1.这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形
能够完全重合的两个三角形叫做全等三角形
引导学生完成课本P3思考:
2.归纳:
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用“≌”表示,读作“全等于”
3.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如⊿ABC和⊿DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作⊿ABC≌⊿DEF。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角
思考:
如课本P3思考图11.1-1中,⊿ABC≌⊿DEF,对应边有什么关系?
对应角呢?
4.归纳:
全等三角形性质:
全等三角形的对应边相等;
全等三角形的对应角相等。
5.思考:
(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角
二次备课建议
教
学
过
程
(2)将⊿ABC沿直线BC平移,得到⊿DEF,说出你得到的结论,说明理由?
(3)如图,⊿ABE≌⊿ACD,AB与AC,AD与AE是对应边,已知:
∠A=43°,∠B=30°,求∠ADC的大小。
三.作业:
P4习题11.1第1,2,3题。
二次备课建议
课时备课
第2课时
课题:
11.2三角形全等的判定
(1)
教学目标
①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
②掌握三角形全等的“边边边”条件,了解三角形的稳定性.
重点难点
三角形全等条件的探索过程
教
学
过
程
一、复习过程,引入新知
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:
全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.
二、创设情境,提出问题
根据上面的结论,提出问题:
两个三角形全等,是否一定需要六个条件呢?
如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.
三、建立模型,探索发现
出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?
让学生按照下面给出的条件作出三角形.
(1)三角形的两个角分别是30°、50°.
(2)三角形的两条边分别是4cm,6cm.
(3)三角形的一个角为30°,—条边为3cm.
再通过画一画,剪一剪,比一比的方式,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等.
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?
让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:
三边对应相等的两个三角形全等.
四、应用新知,体验成功
实物演示:
由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.
鼓励学生举出生活中的实例.
给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.
让学生独立思考后口头表达理由,由教师板演推理过程.
例2如图是用圆规和直尺画已知角的平分线的示意图,作法如下:
二次备课建议
教
学
过
程
①以A为圆心画弧,分别交角的两边于点B和点C;
②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;
③画射线AD.
AD就是∠BAC的平分线.你能说明该画法正确的理由吗?
例3如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?
你有几种方法?
你能证明你的方法吗?
试一试.
五、巩固练习:
课本P8页的练习.
六、反思小结
回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.
七、布置作业
课本P15习题11.2第1、2题.
二次备课建议
课时备课
第3课时
课题:
11.2三角形全等的判定
(2)
教学目标
①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.
②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的
重点难点
应用“边角边”证明两个三角形全等,进而得出线段或角相等
教
学
过
程
一、情境,引入课题
多媒体出示探究3:
已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.
教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等.
二、交流对话,探求新知
根据前面的操作,鼓励学生用自己的语言来总结规律:
两边和它们的夹角对应相等的两个三角形全等.(SAS)
补充强调:
角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.
三、应用新知,体验成功
出示例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
让学生充分思考后,书写推理过程,并说明每一步的依据.
(若学生不能顺利得到证明思路,教师也可作如下分析:
要想证AB=DE,
只需证△ABC≌△DEC
△ABC与△DEC全等的条件现有……还需要……)
明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.
补充例题:
1、已知:
如图AB=AC,AD=AE,∠BAC=∠DAE
求证:
△ABD≌△ACE
证明:
∵∠BAC=∠DAE(已知)
∠BAC+∠CAD=∠DAE+∠CAD
∴∠BAD=∠CAE
二次备课建议
教
学
过
程
AB=AC(已知)
∠BAD=∠CAE(已证)
AD=AE(已知)
∴△ABD≌△ACE(SAS)
思考:
求证:
1.BD=CE2.∠B=∠C
3.∠ADB=∠AEC
变式1:
已知:
如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE.
求证:
△DAC≌△EAB
BE=DC∠B=∠C∠D=∠EBE⊥CD
四、再次探究,释解疑惑
出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?
为什么?
让学生模仿前面的探究方法,得出结论:
两边及其中一边的对角对应相等的两个三角形不一定全等.
教师演示:
方法
(一)教科书10页图11.2-7.
方法
(二)通过画图,让学生更直观地获得结论.
五、巩固练习
课本P10页,练习1、2.
六、小结提高
1.判定三角形全等的方法;
2.证明线段、角相等常见的方法有哪些?
让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.
七、布置作业
1.课本P15页,习题11.2第3、4题.
2.选作题:
(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?
并说明理由.
(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.
二次备课建议
课时备课
第4课时
课题:
11.2三角形全等的判定(3)
教学目标
1了解全等形及全等三角形的的概念;
2理解全等三角形的性质.
重点难点
1探索并掌握两个三角形全等的条件:
“ASA”“AAS”.
2通过对知识方法的总结,培养反思的习惯,培养理性思维.
教
学
过
程
一.创设情境
复习:
师:
我们已经知道,三角形全等的判定条件有哪些?
生:
“SSS”“SAS”
师:
那除了这两个条件,满足另一些条件的两个三角形是否
也可能全等呢?
今天我们就来探究三角形全等的另一些条件。
二.探究新知:
一张教学用的三角形硬纸板不小心
被撕坏了,如图,你能制作一张与原来
同样大小的新教具?
能恢复原来三角形
的原貌吗?
1.师:
我们先来探究第一种情况.(课件出示“探究5……”)
(1)探究5
先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?
师:
怎样画出△A'B'C'?
先自己独立思考,动手画一画。
在画的过程中若遇到不能解决的问题.可小组合作交流解决.
生:
独立探究,试着画△A'B'C',(有问题的,可以小组内交流解决……)……
(2)全班讨论交流
我们又增加了—种判别三角形全等的方法.特别应
注意,“边”必须是“两角的夹边”.
练习:
已知:
如图,AB=A’C,∠A=∠A’,∠B=∠C
求证:
△ABE≌△A’CD
例1.已知:
点D在AB上,点E在AC上,BE和CD
相交于点O,AB=AC,∠B=∠C。
求证:
BD=CE
2.探究6
师:
我们再看看下面的条件:
在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?
能利用角边角条件证明你的结论吗?
二次备课建议
教
学
过
程
师:
看已知条什,能否用“角边角”条件证明.
师:
你是怎么证明的?
(根据学生的不同探究结果,进行不同的引导)
师:
从这可以看出,从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律?
师:
生1很好,这条件我们可以简写成“角角边”或“AAS”,又增加了判定两个三角形全等的一个条件.
强调“AAS”中的边是“其中一个角的对边”.
多让几个学生描述,进一步培养归纳、表达的能力.
例2.课本P12页例3。
师:
从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了.
探究7:
(1)三角对应相等的两个三角形全等吗?
师:
想想,怎样来探究这个问题?
引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.
师:
这一规律我们可以怎样表达?
(2)师:
说得非常好.现在我们来小结一下;判定两个三角形全等我们已有了哪些方法?
SSSSASASAAAS
三.小结提高
师:
这节课通过对两个三角形全等条件的进一步探究,你有什么收获?
四.巩固练习
课本P13页,练习1、2.
五.布置作业
1.课本P15页习题11.2第6、11题
2.如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?
如果可以,带哪块去合适?
为什么?
二次备课建议
课时备课
第5课时
课题:
11.2三角形全等的判定(4)
教学目标
探索并掌握两个直角三角形全等的条件.
提高应用数学的意识.
重点难点
理解,掌握三角形全等的条件:
HL.
教
学
过
程
一.提问:
1、判定两个三角形全等方法有:
,,,。
二.创设情境:
(显示图片),舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
方法一:
测量斜边和一个对应的锐角.(AAS)
方法二:
测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)
⑵如果他只带了一个卷尺,能完成这个任务吗?
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?
下面让我们一起来验证这个结论。
三.新课:
已知线段a、c(a﹤c)和一个直角α,利用尺规作一个Rt△ABC,使∠C=∠α,CB=a,AB=c.
想一想,怎样画呢?
按照下面的步骤做一做:
⑴作∠MCN=∠α=90°;
⑵在射线CM上截取线段CB=a
⑶以B为圆心,C为半径画弧,交射线CN于点A;
⑷连接AB.
⑴△ABC就是所求作的三角形吗?
⑵剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?
直角三角形全等的条件
斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”.
想一想
你能够用几种方法说明两个直角三角形全等?
直角三角形是特殊的三角形,所以不仅有一般
三角形判定全等的方法:
SAS、ASA、AAS、SSS,
还有直角三角形特殊的判定方法——“HL”.
二次备课建议
教
学
过
程
四.练一练:
1.如图,两根长度为12米的绳子,一端系在旗杆上,
另一端分别固定在地面两个木桩上,两个木桩离旗
杆底部的距离相等吗?
请说明你的理由。
2.如图,有两个长度相同的滑梯,左边滑梯的高度AC
与右边滑梯水平方向的长度DF相等,两个滑梯的倾
斜角∠ABC和∠DFE的大小有什么关系?
解:
∠ABC+∠DFE=90°.理由如下:
在Rt△ABC和Rt△DEF中,
则
BC=EF,
AC=DF.
∴Rt△ABC≌Rt△DEF(HL).
∴∠ABC=∠DEF
(全等三角形对应角相等).
又∠DEF+∠DFE=90°,
∴∠ABC+∠DFE=90°.
五.小结:
这节课你有什么收获呢?
与你的同伴进行交流
六.作业:
课本P16页第7、8题。
二次备课建议
课时备课
第6课时
课题:
11.3.1角的平分线的性质
(一)
教学目标
1.应用三角形全等的知识,解释角平分线的原理.
2.会用尺规作一个已知角的平分线.
重点难点
教学重点:
利用尺规作已知角的平分线.
教学难点:
角的平分线的作图方法的提炼.
教
学
过
程
一.提出问题,创设情境
问题1:
三角形中有哪些重要线段.
问题2:
你能作出这些线段吗?
如果老师手里只有直尺和圆规,你能帮我设计一个作角的平分线的操作方案吗?
二.导入新课
议一议:
下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?
教师活动:
演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法.
AB=AD
BC=DC
AC=AC
所以△ABC≌△ADC(SSS).
所以∠CAD=∠CAB.
即射线AC就是∠DAB的平分线.
老师再提出问题:
通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.
(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)
讨论结果展示:
作已知角的平分线的方法:
已知:
∠AOB.
求作:
∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于
MN的长为半径作弧.两弧在∠AOB内部交于点C.
二次备课建议
教
学
过
程
(3)作射线OC,射线OC即为所求.
(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).
议一议:
1.在上面作法的第二步中,去掉“大于
MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)
学生讨论结果总结:
1.去掉“大于
MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于
MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
练一练:
任意画一角∠AOB,作它的平分线.
三.随堂练习:
课本P19练习.
练后总结:
平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直.
四.课时小结
本节课中我们利用已学过的三角形全等的知识,探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,进一步体会温故而知新是一种很好的学习方法.
五.课后作业
课本P22习题11.2第1、2题.
二次备课建议
课时备课
第7课时
课题:
11.3.2角的平分线的性质
(二)
教学目标
1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
2.能应用这两个性质解决一些简单的实际问题.
重点难点
教学重点:
角平分线的性质及其应用.
教学难点:
灵活应用两个性质解决问题
教
学
过
程
一.创设情境,引入新课
[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?
把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
二.导入新课
角平分线的性质即已知角的平分线,能推出什么样的结论.
操作:
1.折出如图所示的折痕PD、PE.
2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.
画一画:
按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?
拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.
问题1:
你能用文字语言叙述所画图形的性质吗?
问题2:
(出示投影片)
能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:
二次备课建议
教
学
过
程
学生通过讨论作出下列概括:
已知事项:
OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:
PD=PE.
于是我们得角的平分线的性质:
在角的平分线上的点到角的两边的距离相等.
[师]那么到角的两边距离相等的点是否在角的平分线上呢?
(出示投影)
问题3:
根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
下面请同学们思考一个问题.
思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:
20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?
用哪一个性质可以解决这个问题?
2.比例尺为1:
20000是什么意思?
讨论结果展示:
1.应该是用第二个性质.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.
2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,
二次备课建议
教
学
过
程
就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:
20000,其实就是图中1cm表示实际距离200m的意思.作图如下:
第一步:
尺规作图法作出∠AOB的平分线OP.
第二步:
在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了.
总结:
应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.
[例]如图,△ABC的角平分线BM、CN相交于点P.
求证:
点P到三边AB、BC、CA的距离相等.
[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:
PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,根据角平分线性质和等式的传递性可以解决这个问题.
证明:
过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.
因为BM是△ABC的角平分线,点P在BM上.
所以PD=PE.
同理PE=PF.
所以PD=PE=PF.
即点P到三边AB、BC、CA的距离相等.
三.随堂练习
1.课本P22练习.
2.课本P22习题11.3第3题.
在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等.
四.课时小结
今天,我们学习了关于角平分线的两个性质:
①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,可以看出,随着研究的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.
五.课后作业:
课本P22页习题11.3第4、5、6题.
二次备课建议