牛顿运动定律的复习.docx

上传人:b****5 文档编号:29956167 上传时间:2023-08-03 格式:DOCX 页数:16 大小:343.29KB
下载 相关 举报
牛顿运动定律的复习.docx_第1页
第1页 / 共16页
牛顿运动定律的复习.docx_第2页
第2页 / 共16页
牛顿运动定律的复习.docx_第3页
第3页 / 共16页
牛顿运动定律的复习.docx_第4页
第4页 / 共16页
牛顿运动定律的复习.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

牛顿运动定律的复习.docx

《牛顿运动定律的复习.docx》由会员分享,可在线阅读,更多相关《牛顿运动定律的复习.docx(16页珍藏版)》请在冰豆网上搜索。

牛顿运动定律的复习.docx

牛顿运动定律的复习

牛顿运动定律

要点归纳

(一)深刻理解牛顿第一、第三定律

1.牛顿第一定律(惯性定律)

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.

(1)理解要点

①运动是物体的一种属性,物体的运动不需要力来维持.

②它定性地揭示了运动与力的关系:

力是改变物体运动状态的原因,是使物体产生加速度的原因.

③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.

(2)惯性:

物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.

①惯性是物体的固有属性,与物体的受力情况及运动状态无关.

②质量是物体惯性大小的量度.

2.牛顿第三定律

(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.

(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.

(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.

(二)牛顿第二定律

1.定律内容

物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.

2.公式:

F合=ma

理解要点

①因果性:

F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.

②方向性:

a与F合都是矢量,方向严格相同.

③瞬时性和对应性:

a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.

3.应用牛顿第二定律解题的一般步骤:

(1)确定研究对象;

(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;

(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;

(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;

(5)统一单位,计算数值.

热点、重点、难点

一、正交分解法在动力学问题中的应用

当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.

1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.

2.Fx合=max合,Fy合=may合,Fz合=maz合.

3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.

●例 如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t1=2s后停止,小球沿细杆运动的部分v-t图象如图1-15乙所示.试求:

(取g=10m/s2,sin37°=0.6,cos37°=0.8)

图1-15

(1)小球在0~2s内的加速度a1和2~4s内的加速度a2.(20m/s2,方向沿杆向上;-10m/s2,负号表示方向沿杆向下

(2)风对小球的作用力F的大小.(60N)

【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.

②正交分解法是求解高中物理题最重要的思想方法之一.

二、连接体问题(整体法与隔离法)

高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:

一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.

1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.

2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.

3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.

●例 如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为( C )

图1-16

A.

        B.

C.

D.

【点评】①解析中的‘隔离’对A,B都是可以的。

②当地面粗糙,且两物体与地面的动摩擦因数相同,则此时的伸长量还一样吗?

题.如图示,两物块质量为M和m,用绳连接后放在倾角为θ的斜面上,物块和斜面的动摩擦因素为μ,用沿斜面向上的恒力F拉物块M运动,求中间绳子的张力.

 

★如果斜面光滑,求绳的拉力?

★如果斜面光滑,且把绳换成弹簧,求弹簧的拉力?

★斜面光滑,且让两物体直接接触,求物块间的弹力?

【同类拓展】 如图1-17所示,质量为m的小物块A放在质量为M的木板B的左端,B在水平拉力的作用下沿水平地面匀速向右滑动,且A、B相对静止.某时刻撤去水平拉力,经过一段时间,B在地面上滑行了一段距离x,A在B上相对于B向右滑行了一段距离L(设木板B足够长)后A和B都停了下来.已知A、B间的动摩擦因数为μ1,B与地面间的动摩擦因数为μ2,且μ2>μ1,则x的表达式应为( C )

图1-17

A.x=

LB.x=

C.x=

D.x=

【点评】①虽然使A产生加速度的力由B施加,但产生的加速度a1=μ1g是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.

②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.

3、临界问题

涉及临界状态的问题叫临界问题。

临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。

如:

相互挤压的物体脱离的临界条件是压力减为零;存在摩擦的物体产生相对滑动的临界条件是静摩擦力取最大静摩擦力,弹簧上的弹力由斥力变为拉力的临界条件为弹力为零等。

临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。

¡ñ例 如图1-18甲所示,滑块A置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M的光滑楔形滑块A的顶端P处,细线另一端拴一质量为m的小球B.现对滑块施加一水平方向的恒力F,要使小球B能相对斜面静止,恒力F应满足什么条件?

图1-18甲

【解析】

先考虑恒力背离斜面方向(水平向左)的情况:

设恒力大小为F1时,B还在斜面上且对斜面的压力为零,此时A、B有共同加速度a1,B的受力情况如图1-18乙所示,有:

图1-18乙

Tsin¦È=mg,Tcos¦È=ma1

解得:

a1=gcot¦È

即F1=(M+m)a1=(M+m)gcot¦È

由此可知,当水平向左的力大于(M+m)gcot¦È时,小球B将离开斜面,对于水平恒力向斜面一侧方向(水平向右)的情况:

设恒力大小为F2时,B相对斜面静止时对悬绳的拉力恰好为零,此时A、B的共同加速度为a2,B的受力情况如图1-18丙所示,有:

图1-18丙

FNcos¦È=mg,FNsin¦È=ma2

解得:

a2=gtan¦È

即F2=(M+m)a2=(M+m)gtan¦È

由此可知,当水平向右的力大于(M+m)gtan¦È,B将沿斜面上滑,综上可知,当作用在A上的恒力F向左小于(M+m)gcot¦È,或向右小于(M+m)gtan¦È时,B能静止在斜面上.

【点评】斜面上的物体、被细绳悬挂的物体这两类物理模型是高中物理中重要的物理模型,也是高考常出现的重要物理情境。

题:

.如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处,细线另一端拴一质量为m的小球。

当滑块以2g加速度向左运动时,线中拉力T等于多少?

(思考:

此题有没有临界情况)

题:

一个物体沿摩擦因数一定的斜面加速下滑,下列图象,哪个比较准确地描述了加速度a与斜面倾角θ的关系?

(思考:

物体在斜面上的临界,即恰好受力平衡的条件)

 

题:

一个物块由静止开始沿不同长度的光滑斜面滑到水平地面上的定点B,这些斜面的起点都靠在竖直墙上,如图1所示,已知B点距墙角距离为b,要使小物块从斜面的起点滑到B点所用的时间最短,求斜面的起点(如图中P点)距地面的高度是多少?

所用的时间又是多少?

 

常考:

临界情况常和“整体法”“隔离法”出现在一起,进行综合考查

整体法与隔离法主要考查连接体问题,所谓连接体,即当两个或两个以上的物体之间通过轻绳、轻杆相连或直接接触而运动的问题.但是,几个物体的运动可以相同,也可以不同。

例:

如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知mA=6kg,mB=2kg,A、B间动摩擦因数?

=0.2.A物上系一细线,细线能承受的最大拉力是20N,水平向右拉细线,假设A、B之间最大静摩擦力等于滑动摩擦力.在细线不被拉断的情况下,下述中正确的是(g=10m/s2)()

A.当拉力F<12N时,A静止不动B.当拉力F>12N时,A相对B滑动

C.当拉力F=16N时,B受A摩擦力等于4ND.无论拉力F多大,A相对B始终静止

 

题:

如图甲,质量为m=1Kg的物块放在倾角为θ的斜面上,斜面体质量为M=2Kg,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F,要使物体m相对斜面静止,力F应为多大?

(设物体与斜面间的最大静摩擦力等于滑动摩擦力,g取10m/s2)

✧整体与隔离的单独体会:

例:

如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,即a=g/2,则小球在下滑的过程中,木箱对地面的压力为多少?

 

例:

如图所示,薄平板A长L=5m,质量M=5kg,放在水平桌面上,板右端与桌边缘相齐.在A上距其右端s=3m处放一个质量m=2kg的小物体B,已知A与B之间的动摩擦因数μ1=0.1,A、B两物体与桌面间的动摩擦因数μ2=0.2,最初系统静止.现在对板A向右施加一水平恒力F,将A从B下抽出(设B不会翻转),且恰使B停在桌面边缘,试求F的大小(取g=10m/s2).

 

例:

如图所示,滑轮的质量不计,已知三个物体的质量关系是m1=m2+m3,这时弹簧秤的读数为T.若把物体m2从右边移到左边的物体m1上,弹簧秤的读数T将()

A.增大B.减小C.不变D.无法确定

 

例:

如图所示,斜面体ABC置于粗糙的水平地面上,小木块m在斜面上静止或滑动时,斜面体均保持静止不动.下列哪种情况,斜面体受到地面向右的静摩擦力()

A.小木块m静止在BC斜面上B.小木块m沿BC斜面加速下滑

C.小木块m沿BA斜面减速下滑D.小木块m沿AB斜面减速上滑

 

例:

如图所示,在平静的水面上,有一长l=12m的木船,木船右端固定一直立桅杆,木船和桅杆的总质量为m1=200kg,质量为m2=50kg的人立于木船左端,开始时木船与人均静止.若人匀加速向右奔跑至船的右端并立即抱住桅杆,经历的时间是2s,船运动中受到水的阻力是船(包括人)总重的0.1倍,g取10m/s2.求此过程中船的位移大小.

 

例:

如图所示,在长为L的均匀杆的顶部A处,紧密套有一小环,它们一起从某高处做自由落体运动,杆的B端着地后,杆立即停止运动并保持竖直状态,最终小环恰能滑到杆的中间位置.若环在杆上滑动时与杆间的摩擦力大小为环重力的1.5倍,求从杆开始下落到环滑至杆的中间位置的全过程所用的时间.

 

例:

半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面

之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()

A.MN对Q的弹力逐渐减小   B.P对Q的弹力逐渐增大

C.地面对P的摩擦力逐渐增大  D.Q所受的合力逐渐增大

例:

.有一个直角支架AOB,AO是水平放置,表面粗糙.OB竖直向下,表面光滑.OA上套有小环P,OB套有小环Q,两环质量均为m,两环间由一根质量可以忽略.不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO杆对P的支持力FN和细绳上的拉力F的变化情况是:

()

A.FN不变,F变大B.FN不变,F变小

C.FN变大,F变大D.FN变大,F变小

【点评】本例是正交分解法、隔离法的典型应用,以后的许多考题都由此改编而来.

四、超重与失重问题

1.超重与失重只是物体在竖直方向上具有加速度时所受支持力不等于重力的情形.

2.要注意飞行器绕地球做圆周运动时在竖直方向上具有向心加速度,处于失重状态.

¡ñ例 为了测量某住宅大楼每层的平均高度(层高)及电梯的运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验:

质量m=50kg的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层的过程中,体重计的示数随时间变化的情况,并作出了如图1-19甲所示的图象.已知t=0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层.求:

(1)电梯启动和制动时的加速度大小.

(2)该大楼的层高.

图1-19甲

[答案] 

(1)2m/s2 2m/s2 

(2)3m

五.物体受力突变的问题

◆牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。

分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。

◆明确两种基本模型的特点:

A.轻绳和轻杆的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。

B.轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。

例.如图甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。

如果突然把两水平细线剪断,求剪断瞬间小球A、B的加速度各是多少?

角已知)

例:

如右图,轻弹簧上端与一质量为

的木块1相连,下端与另一质量为

的木块2相连,整个系统置于水平放置的光滑木坂上,并处于静止状态。

现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为

重力加速度大小为g。

则有()

A.

B.

C.

D.

例:

如图所示,两根轻弹簧下面均连接一个质量为m的小球,上面一根弹簧的上端固定在天花板上,两小球之间通过一不可伸长的细线相连接,细线受到的拉力大小等于4mg.当剪断两球之间的细线瞬间,以下关于球A的加速度大小

;球

B的加速度大小

;以及弹簧对天花板的拉力大小正确的是:

()

(A)0;2g;2mg(B)4g;4g;2mg

(C)4g;2g;4mg(D)0;4g;4mg

经典考题

在本专题中,正交分解、整体与隔离相结合是最重要也是最常用的思想方法,是高考中考查的重点.力的独立性原理、运动图象的应用次之,在高考中出现的概率也较大.

1.如图1-21甲所示,在倾角为¦Á的固定光滑斜面上有一块用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为[2004年高考¡¤全国理综卷¢ô](  )

图1-21甲

A.

sin¦ÁB.gsin¦Á

C.

gsin¦ÁD.2gsin¦Á

2.如图1-22所示,某货场需将质量m1=100kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物由轨道顶端无初速度滑下,轨道半径R=1.8m.地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为l=2m,质量均为m2=100kg,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为¦Ì1,木板与地面间的动摩擦因数¦Ì2=0.2.(最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)

图1-22

(1)求货物到达圆轨道末端时对轨道的压力.

(2)若货物滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求¦Ì1应满足的条件.

(3)若¦Ì1=0.5,求货物滑到木板A末端时的速度和在木板A上运动的时间.

3.如图1-23甲所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为¦Ñ;石油密度远小于¦Ñ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做¡°重力加速度反常¡±.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.

图1-23甲

(1)设球形空腔体积为V,球心深度为d(远小于地球半径),

=x,求空腔所引起的Q点处的重力加速度反常.

(2)若在水平地面上半径L的范围内发现:

重力加速度反常值在¦Ä与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.

题:

如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为

.重力加速度为g.

(1)当纸板相对砝码运动时,求纸板所受摩擦力大小;

(2)要使纸板相对砝码运动,求所需拉力的大小;

(3)本实验中,

=0.5kg,

=0.1kg,

砝码与纸板左端的距离d=0.1m,取g=10

.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小学作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1