图象的这些特点,反映了当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。
作业
设计
必做
选做
教学
反思
教学时间
课题
22.1二次函数(3)
课型
新授课
教
学
目
标
知 识
和
能 力
使学生能利用描点法正确作出函数y=ax2+b的图象。
过 程
和
方 法
让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
情 感
态 度
价值观
师生互动,学生动手操作,体验成功的喜悦
教学重点
会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系
教学难点
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系
教学准备
教师
多媒体课件
学生
课堂教学程序设计
副案
一、提出问题
1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:
对于前面提出的第2个问题,你将采取什么方法加以研究?
(画出函数y=2x2和函数y=2x2的图象,并加以比较)
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
教学要点
1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。
2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.
3.教师写出解题过程,同学生所画图象进行比较。
解:
(1)列表:
x
…
-3
-2
-1
0
1
2
3
…
y=x2
…
18
8
2
0
2
8
18
…
y=x2+1
…
19
9
3
l
3
9
19
…
(2)描点:
用表里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:
用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。
(图象略)
问题3:
当自变量x取同一数值时,这两个函数的函数值之间有什么关系?
反映在图象上,相应的两个点之间的位置又有什么关系?
教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值
之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。
教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:
反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。
问题4:
函数y=2x2+1和y=2x2的图象有什么联系?
由问题3的探索,可以得到结论:
函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。
问题5:
现在你能回答前面提出的第2个问题了吗?
让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
问题6:
你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
三、做一做
问题7:
先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
问题8:
你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?
问题9:
在同一直角坐标系中。
函数y=-
x2+2图象与函数y=-
x2的图象有什么关系?
问题10:
你能说出函数y=-
x2+2的图象的开口方向、对称轴和顶点坐标吗?
问题11:
这个函数图象有哪些性质?
四、练习:
P7练习。
五、小结
1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?
2.你能说出函数y=ax2+k具有哪些性质?
作业
设计
必做
选做
教
学
反
思
教学时间
课题
22.1 二次函数(4)
课型
新授课
教
学
目
标
知 识
和
能 力
1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。
过 程
和
方 法
让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。
情 感
态 度
价值观
教学重点
会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系
教学难点
理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系
教学准备
教师
多媒体课件
学生
课堂教学程序设计
副案
一、提出问题
1.在同一直角坐标系内,画出二次函数y=-
x2,y=-
x2-1的图象,并回答:
(1)两条抛物线的位置关系。
(2)分别说出它们的对称轴、开口方向和顶点坐标。
(3)说出它们所具有的公共性质。
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?
这两个函数的图象之间有什么关系?
二、分析问题,解决问题
问题1:
你将用什么方法来研究上面提出的问题?
(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)
问题2:
你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?
教学要点
1.让学生完成列表。
2.让学生在直角坐标系中画出图来:
3.教师巡视、指导。
问题3:
现在你能回答前面提出的问题吗?
开口方向
对称轴
顶点坐标
y=2x2
y=2(x-1)2
教学要点
1.教师引导学生观察画出的两个函数图象.
根据所画出的图象,完成以下填空:
2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:
函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。
问题4:
你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?
教学要点
1.教师引导学生回顾二次函数y=2x2的性质,并观察二次函数y=2(x-1)2的图象;
2.让学生完成以下填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。
三、做一做
问题5:
你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?
教学要点
1.在学生画函数图象的同时,教师巡视、指导;
2.请两位同学上台板演,教师讲评;
3.让学生发表不同的意见,归结为:
函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。
它的对称轴是直线x=-1,顶点坐标是(-1,0)。
问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗?
教学要点
让学生讨论、交流,举手发言,达成共识:
当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。
问题7:
函数y=-
(x+2)2图象与函数y=-
x2的图象有何关系?
问题8:
你能说出函数y=-
(x+2)2图象的开口方向、对称轴和顶点坐标吗?
问题9:
你能得到函数y=
(x+2)2的性质吗?
教学要点
让学生讨论、交流,发表意见,归结为:
当x<-2时,函数值y随x的增大而增大;
当x>-2时,函数值y随工的增大而减小;当x=-2时,函数取得最大值,最大值y=0。
四、课堂练习:
P8练习。
五、小结:
1.在同一直角坐标系中,函数y=a(x-h)2的图象与函数y=ax2的图象有什么联系和区别?
2.你能说出函数y=a(x-h)2图象的性质吗?
3.谈谈本节课的收获和体会。
作业
设计
必做
选做
教学
反思
教学时间
课题
22.1 二次函数(5)
课型
新授课
教
学
目
标
知 识
和
能 力
1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。
2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。
过 程
和
方 法
让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。
情 感
态 度
价值观
教学重点
确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质
教学难点
正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质
教学准备
教师
多媒体课件
学生
课堂教学程序设计
副案
一、提出问题
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)
2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?
(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图26.2.3)
3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?
函数y=2(x-1)2+1有哪些性质?
二、试一试
你能填写下表吗?
y=2x2 向右平移
的图象 1个单位
y=2(x-1)2
向上平移
1个单位
y=2(x-1)2+1的图象
开口方向
向上
对称轴
y轴
顶点
(0,0)
问题2:
从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?
问题3:
你能发现函数y=2(x-1)2+1有哪些性质?
对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。
三、做一做
问题4:
在图26.2.3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?
教学要点
1.在学生画函数图象时,教师巡视指导;
2.对“比较”两字做出解释,然后让学生进行比较。
问题5:
你能说出函数y=-
(x-1)2+2的图象与函数y=-
x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
(函数y=-
(x-1)2+2的图象可以看成是将函数y=-
x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
四、课堂练习:
P10练习。
五、小结
1.通过本节课的学习,你学到了哪些知识?
还存在什么困惑?
2.谈谈你的学习体会。
作业
设计
必做
选做
教
学
反
思
教学时间
课题
22.1 二次函数(6)
课型
新授课
教
学
目
标
知 识
和
能 力
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
过 程
和
方 法
让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
情 感
态 度
价值观
教学重点
用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标
教学难点
理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-
、(-
,
)
教学准备
教师
多媒体课件
学生
课堂教学程序设计
副案
一、提出问题
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
3.函数y=-4(x-2)2+1具有哪些性质?
(当x<2时,函数值y随x的增大而增大,当x>