高速数据转换器接口.docx

上传人:b****8 文档编号:29797475 上传时间:2023-07-27 格式:DOCX 页数:12 大小:26.15KB
下载 相关 举报
高速数据转换器接口.docx_第1页
第1页 / 共12页
高速数据转换器接口.docx_第2页
第2页 / 共12页
高速数据转换器接口.docx_第3页
第3页 / 共12页
高速数据转换器接口.docx_第4页
第4页 / 共12页
高速数据转换器接口.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

高速数据转换器接口.docx

《高速数据转换器接口.docx》由会员分享,可在线阅读,更多相关《高速数据转换器接口.docx(12页珍藏版)》请在冰豆网上搜索。

高速数据转换器接口.docx

高速数据转换器接口

高速数据转换器接口

当今的模数转换器(ADC)采用了最新的技术,以高精度及快速的采样频率对模拟信号进行采集。

数据转换器的复杂性随着采样频率及精度的提高而增加。

高性能数据转换器规格的设定必须遵循严格的输入条件,以实现器件预期性能的最大化。

一个颇具挑战性的输入条件是:

对ADC输入模拟信号进行测量、驱动和接口连接。

本文将探讨一些对于高速ADC进行有效接口连接的技术,从而使ADC实现性能最佳化。

就有效输入驱动以维护信号完整性而言,已经有许多好的应用注释以及文章发表。

本文将探讨有关输入驱动的新发展。

ADC输入架构与驱动器的选择

ADC的模拟输入配置随着采样精度和最大采样频率的变化而有所不同。

在输入阶段,影响输入驱动器选择的特征有:

1.单端与差分

2.高阻抗与低阻抗(100W)(或是有缓冲与无缓冲)

单端与差分

大部分推动采样精度和采样频率达到极限的ADC采用的是差分输入方式。

差分输入的优势在于降低偶次谐波和EMI。

一些差分输入ADC具有IRS(输入范围选择)寄存器,其允许使用者通过将未使用的输入连接到共模(CM)A/D转换参照的方式,以单端输入来使用器件。

有缓冲与无缓冲

高采样频率ADC(500MSPS)经常要处理高频模拟输入信号。

假定使用标准的PCB板尺寸和轨迹长度,如果这个高频模拟信号没有正常结束,又用处理射频信号和电路板的方式加以处理,模拟信号就会衰退。

这样的高频应用得益于低阻抗(50W单端或100W差分)模拟输入,因此,大部分UHF和VHF电路为50W系统。

为了获得较高的失真性能,通常使用差分输入。

由于严格的规范限制,以及受高频的影响,高采样率ADC通常不提供允许使用单端输入的IRS选项。

原因是:

采用IRS的ADC需要额外的电路才能转换到满量程(FSR),而这对于在高频/高采样率下的应用却并不可行。

因此,这个等级的ADC需要高频、低电阻(100W差分)的输入驱动。

使用低电阻输入ADC,模拟输入在被应用到用于转换的采样/保持(S/H)电路之前就已缓冲。

所以,并不需要采用在非缓冲ADC中使用的标准去耦电路(串联电阻R,并联电容C)。

在图1的图解中使用了一个非缓冲输入的ADC(ADC10080),这些去耦元件在图中标识为R1、R2(18W)及C1(25W)。

从单端到差分的转换

中点接线变压器

(Ruthroff变压器)

如前所述,驱动差分ADC的输入必须为差分形式。

将单端输入转换为ADC可用的差分信号需要使用一个中点接线变压器,如图1所示(在“差分输入”虚线下可看出变压器如何接到ADC输入)。

差分输入的共模电压(CM)应遵循VCOM电压(在ADC上的输出引脚),以便使ADC内部的采样保持电路正常工作。

图1中的电路允许通过将变压器的中点接线连接到ADC的VCOM输出来对输入CM加以设定。

图1使用变压器将单端输入转换为差分形式

{{分页}}

变压器的较低截止频率不允许低频内容被耦合进来。

因此,这种形式的耦合只可应用于不需要DC以及低频内容的系统。

除此之外,这个电路也承受了高频变压器的泄漏效应,限制了它的上限工作频率。

典型的变压器有上限及下限工作频率。

较低频率限制由初级电感决定。

对于这个与8位转换器一起使用的变压器而言,如果不采用其它的增益校准或调整方法,其工作的频带非常窄,受限在1MHz~100MHz,其中,插入损耗变化小于0.034dB(1LSB)。

对于最大回波损耗(最小反射),许多较高速度的应用要求对图1中J1(输入连接器)处的输入阻抗进行控制,并且要与连接到连接器的电缆特征阻抗相匹配。

当电缆的长度超过所遇最短波长的1/20时,这种要求尤为重要。

只要变压器回波损耗在频率极值时性能没有衰退,就有可能通过设置一个通过输入的终端电阻RT来达成此目标。

这样,输入阻抗就会接近RT,原因在于变压器回波损耗已增大,足以具有最小负载效应。

在较高的频率下,由于变压器回波损耗的减少,使用这种类型的变压器配置会使控制输入端更加困难。

而这正是不平衡变压器的优势所在。

不平衡变压器

(Guanella变压器)

另一个进行单端到差分转换的方法是使用不平衡变压器,如图2所示。

与图1相比,这种方式具有下述优点及缺点:

优点:

1.较高的工作频率

2.对于宽带应用而言,有较高的回波损耗

3.较佳的增益与相位平衡

缺点:

1.无法设定共模电压

2.无法提供电压增益

与图1的中点接线变压器或Ruthroff变压器相比,不平衡配置有着更高的工作频率。

然而,采用不平衡配置后,因为无法设定共模电压水平,ADC输入必须为AC耦合电压。

以ADC08D1500为例,它是一个8位、1500MSPS的转换器,如果在AC耦合的模式下工作,就会通过内部电阻自动将其输入端偏置到适当的共模电压值。

如果ADC的VCMO输出接地,就会以AC耦合模式运行。

如图2所示,使用AC耦合电容(4.7nF),输入耦合电路的-3dB频率大约为677KHz(=1/(2pReqCeq),其中,Req=100W,Ceq=4.7nF/2=2.35nF)。

这个100W的等效电阻是耦合电容器(RT2与ADC的100W输入并联,总共50W)右边的差分负载与介于不平衡变压器引脚1和引脚3(50W)间差分阻抗的串联组合。

采用图2的电路,J1终止于50W左右,并且假定所驱动的ADC具有100W的差分输入终端(如ADC08D1500)。

与100WADC输入阻抗并联的RT2为50W,这是从J1到接地的输入阻抗。

此输入阻抗一直保持一定的频率,从而使不平衡变压器发挥变压器的作用。

超过这个基于特殊不平衡变压器及其核心特征、线圈间电容,以及其它因数的频率范围,输入阻抗就会偏离这个值,并且输入反射会导致回波损耗减少。

大部分不平衡变压器的产品手册都列出了几个频点的回波损耗与上限和下限工作频率。

{{分页}}

图2使用不平衡变压器进行单端到差分的转换

图3显示了一个中点接线变压器(TC4-14)以及一个不平衡变压器(TC1-1-13M)的输入回波损耗,并进行了简单的比较。

图3中点接线变压器与不平衡变压器输入回拨损耗的比较

{{分页}}

由图3中可以看出,中点接线变压器的回波损耗在700MHz以下与1.3GHz以上时,下降得十分迅速,而不平衡变压器则具有一定的高出数MHz的回波损耗(10dB),并且在频率到达约2.6GHz左右时才开始下降。

这是不平衡变压器相对于中点接线变压器的优点。

在较高频率减少的回波损耗会造成一种不匹配的状态,并且产生较高的反射能量,这会在采集信号中形成不想要的谐波,并且降低系统的ENOB性能。

回波损耗(RL)与二端口输入阻抗相关,如式1如示:

RL=20Log|(Zin+50)/(Zin-50)|

(1)

举例来说,10dB的RL与96W或26W的输入阻抗相符合(根据式1中商的符号而定)。

阻抗不连续时的反射波(图2中的J1)在源端出来另一个反射之后将会抵达Rs1(假定来源与传输线并没有完美匹配)。

往返时间为l/n,其中,l为电缆长度,n为通过传输线介质的波速。

构成输入信号的不同频率元件,在遇到此往返延迟并且加上原来的入射波之后会回到中断处,从而形成最终的信号。

对于往返延迟(2l/n),l为一个重要的谐波(大约是周期T的1/10),其最终的波形将会失真。

从数学上讲,这里的T满足了T≤(20l/n)的谐波要求。

原因是,对于较短周期的谐波,入射以及反射波会合成(在时间上)交迭形式,这会造成波形的改变。

这正是在ENOB上降低的原因,因为这个改变的波形将会增加总谐波失真(THD)的失真项,从而产生较低的ENOB。

为了平衡非平衡功能,变压器的初级与次级总会保持1:

1的比例,因此,此配置不能提供任何电压增益。

有源单端到差分的转换

如前所述,变压器可以被用作转换器,然而它们在宽带的应用上有很大的缺点,并且在这些应用中,它们不会在其操作频率区域中包括DC和低频。

基于这个原因,半导体制造商已经导入了有源器件来执行这项功能,以弥补变压器耦合结构的缺点。

LMH6555是专门设计用来驱动如图4显示为0.8Vpp的ADC的100W差分输入,并且提供一个到终端电缆的固定50W的输入阻抗(未显示于图4中),以达到最高的回波损耗。

单端到差分转换器会将频率范围从DC一直扩展到1.2GHz(此为LMH6555的-3dB频宽限制)。

通过将ADC的VCMO连接到LMH6555的VCM_REF输入,可以保持精确的输出共模电压控制。

利用这样的结构,可以获得全信号频谱,而共模控制则可以由LMH6555自动实现。

图4中所示的缓冲器(LMV321)用来提高ADC的VCMO引脚所流出的电流,以使得对于VCM_REF输入而言有适当的驱动能力。

是否需要缓冲器取决于ADC的电流输出能力。

图4针对宽带应用的有源单端到差分转换

{{分页}}

LMH6555的增益(在Vin+下的差分输出到单端或取决于所驱动输入的Vin+)确定在4.8V/V,其配置如图4所示,其中,Rs1=Rs2=50W。

对于输入信号在振幅上较大的情形,LMH6555插入增益可以通过增加Rs2和Rs1的值来降低。

这两个电阻应该总是相等,以保持对于低输出偏移的输入平衡。

图5所示例子中,位于50W电缆接收端的LMH6555的增益通过Rx和Ry降低。

通过选择组件值,LMH6555电路(J1)的输入阻抗被保持在50W,以使阻抗匹配。

两个LMH6555具有100W的到地等效阻抗,各个组成值都被显示,以用来维持低输出偏移电压。

LMH6555的输入/输出摆幅关系如式2所示:

Vout(Vpp)=Vin(Vpp)*[RF/(2Rs+Rin_diff)]

(2)

其中,RF=430W,Rin_diff=78W,都是LMH6555特定的值。

图5设定LMH6555增益,同时保持与输入阻抗匹配

Rs是等效电阻,使LMH6555的输入接地(假定它们相等)。

增加Rs会降低增益。

重新整理式2,允许使用者决定Rs的值,可以确定对于一个给定Vin(Vpp)的全ADC的输入摆幅,如式3所示:

Rs=Vin(Vpp)*268.8-39(3)

在图5中,LMH6555的等效输入电阻通过Rs被增加到100W(由式3计算得出),因此,0.52Vpp输入会导致ADC输入恰好为0.8Vpp,而J1的等效输入则维持在50W。

LMH6555将维持低噪声(参照19nV/RtHz输出的平带),并与它输入的Rs无关。

这是因为LMH6555的输入架构由等效输入噪声电压决定,并且独立于源电阻。

ADC要求差分输入的共模电压(在+/-50mV内)非常接近它所产生的VCMO参考输出。

这是采用1.9V供电电压的一个结果,因为损失的供电电压降低了ADC内部的电压余量。

如果未能保持此共模操作,ADC的全失真性能将会迅速恶化。

除了这种共模现象外,ADC两个输入端的任何增益和相位不平衡都会导致获取错误信号。

举例来说,一个100MHz的方波将会在它的尖峰值有1.5%的错误。

8位数据采集具有全尺度0.39%的LSB,并且不平衡变压器等效于3.8LSB。

所以,将增益和相位不平衡最小化是非常必要的。

结语

作为高速ADC接口信号的单端到差分转换,对于重要的数据采集任务,本文分析了输入信号接口的挑战,并探讨了不同的技术需求。

以下内容为繁体版當今的模數轉換器(ADC)采用瞭最新的技術,以高精度及快速的采樣頻率對模擬信號進行采集。

數據轉換器的復雜性隨著采樣頻率及精度的提高而增加。

高性能數據轉換器規格的設定必須遵循嚴格的輸入條件,以實現器件預期性能的最大化。

一個頗具挑戰性的輸入條件是:

對ADC輸入模擬信號進行測量、驅動和接口連接。

本文將探討一些對於高速ADC進行有效接口連接的技術,從而使ADC實現性能最佳化。

就有效輸入驅動以維護信號完整性而言,已經有許多好的應用註釋以及文章發表。

本文將探討有關輸入驅動的新發展。

ADC輸入架構與驅動器的選擇

ADC的模擬輸入配置隨著采樣精度和最大采樣頻率的變化而有所不同。

在輸入階段,影響輸入驅動器選擇的特征有:

1.單端與差分

2.高阻抗與低阻抗(100W)(或是有緩沖與無緩沖)

單端與差分

大部分推動采樣精度和采樣頻率達到極限的ADC采用的是差分輸入方式。

差分輸入的優勢在於降低偶次諧波和EMI。

一些差分輸入ADC具有IRS(輸入范圍選擇)寄存器,其允許使用者通過將未使用的輸入連接到共模(CM)A/D轉換參照的方式,以單端輸入來使用器件。

有緩沖與無緩沖

高采樣頻率ADC(500MSPS)經常要處理高頻模擬輸入信號。

假定使用標準的PCB板尺寸和軌跡長度,如果這個高頻模擬信號沒有正常結束,又用處理射頻信號和電路板的方式加以處理,模擬信號就會衰退。

這樣的高頻應用得益於低阻抗(50W單端或100W差分)模擬輸入,因此,大部分UHF和VHF電路為50W系統。

為瞭獲得較高的失真性能,通常使用差分輸入。

由於嚴格的規范限制,以及受高頻的影響,高采樣率ADC通常不提供允許使用單端輸入的IRS選項。

原因是:

采用IRS的ADC需要額外的電路才能轉換到滿量程(FSR),而這對於在高頻/高采樣率下的應用卻並不可行。

因此,這個等級的ADC需要高頻、低電阻(100W差分)的輸入驅動。

使用低電阻輸入ADC,模擬輸入在被應用到用於轉換的采樣/保持(S/H)電路之前就已緩沖。

所以,並不需要采用在非緩沖ADC中使用的標準去耦電路(串聯電阻R,並聯電容C)。

在圖1的圖解中使用瞭一個非緩沖輸入的ADC(ADC10080),這些去耦元件在圖中標識為R1、R2(18W)及C1(25W)。

從單端到差分的轉換

中點接線變壓器

(Ruthroff變壓器)

如前所述,驅動差分ADC的輸入必須為差分形式。

將單端輸入轉換為ADC可用的差分信號需要使用一個中點接線變壓器,如圖1所示(在“差分輸入”虛線下可看出變壓器如何接到ADC輸入)。

差分輸入的共模電壓(CM)應遵循VCOM電壓(在ADC上的輸出引腳),以便使ADC內部的采樣保持電路正常工作。

圖1中的電路允許通過將變壓器的中點接線連接到ADC的VCOM輸出來對輸入CM加以設定。

圖1使用變壓器將單端輸入轉換為差分形式

{{分頁}}

變壓器的較低截止頻率不允許低頻內容被耦合進來。

因此,這種形式的耦合隻可應用於不需要DC以及低頻內容的系統。

除此之外,這個電路也承受瞭高頻變壓器的泄漏效應,限制瞭它的上限工作頻率。

典型的變壓器有上限及下限工作頻率。

較低頻率限制由初級電感決定。

對於這個與8位轉換器一起使用的變壓器而言,如果不采用其它的增益校準或調整方法,其工作的頻帶非常窄,受限在1MHz~100MHz,其中,插入損耗變化小於0.034dB(1LSB)。

對於最大回波損耗(最小反射),許多較高速度的應用要求對圖1中J1(輸入連接器)處的輸入阻抗進行控制,並且要與連接到連接器的電纜特征阻抗相匹配。

當電纜的長度超過所遇最短波長的1/20時,這種要求尤為重要。

隻要變壓器回波損耗在頻率極值時性能沒有衰退,就有可能通過設置一個通過輸入的終端電阻RT來達成此目標。

這樣,輸入阻抗就會接近RT,原因在於變壓器回波損耗已增大,足以具有最小負載效應。

在較高的頻率下,由於變壓器回波損耗的減少,使用這種類型的變壓器配置會使控制輸入端更加困難。

而這正是不平衡變壓器的優勢所在。

不平衡變壓器

(Guanella變壓器)

另一個進行單端到差分轉換的方法是使用不平衡變壓器,如圖2所示。

與圖1相比,這種方式具有下述優點及缺點:

優點:

1.較高的工作頻率

2.對於寬帶應用而言,有較高的回波損耗

3.較佳的增益與相位平衡

缺點:

1.無法設定共模電壓

2.無法提供電壓增益

與圖1的中點接線變壓器或Ruthroff變壓器相比,不平衡配置有著更高的工作頻率。

然而,采用不平衡配置後,因為無法設定共模電壓水平,ADC輸入必須為AC耦合電壓。

以ADC08D1500為例,它是一個8位、1500MSPS的轉換器,如果在AC耦合的模式下工作,就會通過內部電阻自動將其輸入端偏置到適當的共模電壓值。

如果ADC的VCMO輸出接地,就會以AC耦合模式運行。

如圖2所示,使用AC耦合電容(4.7nF),輸入耦合電路的-3dB頻率大約為677KHz(=1/(2pReqCeq),其中,Req=100W,Ceq=4.7nF/2=2.35nF)。

這個100W的等效電阻是耦合電容器(RT2與ADC的100W輸入並聯,總共50W)右邊的差分負載與介於不平衡變壓器引腳1和引腳3(50W)間差分阻抗的串聯組合。

采用圖2的電路,J1終止於50W左右,並且假定所驅動的ADC具有100W的差分輸入終端(如ADC08D1500)。

與100WADC輸入阻抗並聯的RT2為50W,這是從J1到接地的輸入阻抗。

此輸入阻抗一直保持一定的頻率,從而使不平衡變壓器發揮變壓器的作用。

超過這個基於特殊不平衡變壓器及其核心特征、線圈間電容,以及其它因數的頻率范圍,輸入阻抗就會偏離這個值,並且輸入反射會導致回波損耗減少。

大部分不平衡變壓器的產品手冊都列出瞭幾個頻點的回波損耗與上限和下限工作頻率。

{{分頁}}

圖2使用不平衡變壓器進行單端到差分的轉換

圖3顯示瞭一個中點接線變壓器(TC4-14)以及一個不平衡變壓器(TC1-1-13M)的輸入回波損耗,並進行瞭簡單的比較。

圖3中點接線變壓器與不平衡變壓器輸入回撥損耗的比較

{{分頁}}

由圖3中可以看出,中點接線變壓器的回波損耗在700MHz以下與1.3GHz以上時,下降得十分迅速,而不平衡變壓器則具有一定的高出數MHz的回波損耗(10dB),並且在頻率到達約2.6GHz左右時才開始下降。

這是不平衡變壓器相對於中點接線變壓器的優點。

在較高頻率減少的回波損耗會造成一種不匹配的狀態,並且產生較高的反射能量,這會在采集信號中形成不想要的諧波,並且降低系統的ENOB性能。

回波損耗(RL)與二端口輸入阻抗相關,如式1如示:

RL=20Log|(Zin+50)/(Zin-50)|

(1)

舉例來說,10dB的RL與96W或26W的輸入阻抗相符合(根據式1中商的符號而定)。

阻抗不連續時的反射波(圖2中的J1)在源端出來另一個反射之後將會抵達Rs1(假定來源與傳輸線並沒有完美匹配)。

往返時間為l/n,其中,l為電纜長度,n為通過傳輸線介質的波速。

構成輸入信號的不同頻率元件,在遇到此往返延遲並且加上原來的入射波之後會回到中斷處,從而形成最終的信號。

對於往返延遲(2l/n),l為一個重要的諧波(大約是周期T的1/10),其最終的波形將會失真。

從數學上講,這裡的T滿足瞭T≤(20l/n)的諧波要求。

原因是,對於較短周期的諧波,入射以及反射波會合成(在時間上)交迭形式,這會造成波形的改變。

這正是在ENOB上降低的原因,因為這個改變的波形將會增加總諧波失真(THD)的失真項,從而產生較低的ENOB。

為瞭平衡非平衡功能,變壓器的初級與次級總會保持1:

1的比例,因此,此配置不能提供任何電壓增益。

有源單端到差分的轉換

如前所述,變壓器可以被用作轉換器,然而它們在寬帶的應用上有很大的缺點,並且在這些應用中,它們不會在其操作頻率區域中包括DC和低頻。

基於這個原因,半導體制造商已經導入瞭有源器件來執行這項功能,以彌補變壓器耦合結構的缺點。

LMH6555是專門設計用來驅動如圖4顯示為0.8Vpp的ADC的100W差分輸入,並且提供一個到終端電纜的固定50W的輸入阻抗(未顯示於圖4中),以達到最高的回波損耗。

單端到差分轉換器會將頻率范圍從DC一直擴展到1.2GHz(此為LMH6555的-3dB頻寬限制)。

通過將ADC的VCMO連接到LMH6555的VCM_REF輸入,可以保持精確的輸出共模電壓控制。

利用這樣的結構,可以獲得全信號頻譜,而共模控制則可以由LMH6555自動實現。

圖4中所示的緩沖器(LMV321)用來提高ADC的VCMO引腳所流出的電流,以使得對於VCM_REF輸入而言有適當的驅動能力。

是否需要緩沖器取決於ADC的電流輸出能力。

圖4針對寬帶應用的有源單端到差分轉換

{{分頁}}

LMH6555的增益(在Vin+下的差分輸出到單端或取決於所驅動輸入的Vin+)確定在4.8V/V,其配置如圖4所示,其中,Rs1=Rs2=50W。

對於輸入信號在振幅上較大的情形,LMH6555插入增益可以通過增加Rs2和Rs1的值來降低。

這兩個電阻應該總是相等,以保持對於低輸出偏移的輸入平衡。

圖5所示例子中,位於50W電纜接收端的LMH6555的增益通過Rx和Ry降低。

通過選擇組件值,LMH6555電路(J1)的輸入阻抗被保持在50W,以使阻抗匹配。

兩個LMH6555具有100W的到地等效阻抗,各個組成值都被顯示,以用來維持低輸出偏移電壓。

LMH6555的輸入/輸出擺幅關系如式2所示:

Vout(Vpp)=Vin(Vpp)*[RF/(2Rs+Rin_diff)]

(2)

其中,RF=430W,Rin_diff=78W,都是LMH6555特定的值。

圖5設定LMH6555增益,同時保持與輸入阻抗匹配

Rs是等效電阻,使LMH6555的輸入接地(假定它們相等)。

增加Rs會降低增益。

重新整理式2,允許使用者決定Rs的值,可以確定對於一個給定Vin(Vpp)的全ADC的輸入擺幅,如式3所示:

Rs=Vin(Vpp)*268.8-39(3)

在圖5中,LMH6555的等效輸入電阻通過Rs被增加到100W(由式3計算得出),因此,0.52Vpp輸入會導致ADC輸入恰好為0.8Vpp,而J1的等效輸入則維持在50W。

LMH6555將維持低噪聲(參照19nV/RtHz輸出的平帶),並與它輸入的Rs無關。

這是因為LMH6555的輸入架構由等效輸入噪聲電壓決定,並且獨立於源電阻。

ADC要求差分輸入的共模電壓(在+/-50mV內)非常接近它所產生的VCMO參考輸出。

這是采用1.9V供電電壓的一個結果,因為損失的供電電壓降低瞭ADC內部的電壓餘量。

如果未能保持此共模操作,ADC的全失真性能將會迅速惡化。

除瞭這種共模現象外,ADC兩個輸入端的任何增益和相位不平衡都會導致獲取錯誤信號。

舉例來說,一個100MHz的方波將會在它的尖峰值有1.5%的錯誤。

8位數據采集具有全尺度0.39%的LSB,並且不平衡變壓器等效於3.8LSB。

所以,將增益和相位不平衡最小化是非常必要的。

結語

作為高速ADC接口信號的單端到差分轉換,對於重要的數據采集任務,本文分析瞭輸入信號接口的挑戰,並探討瞭不同的技術需求。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1