第三章复变函数的积分.docx

上传人:b****1 文档编号:295311 上传时间:2022-10-08 格式:DOCX 页数:13 大小:187.06KB
下载 相关 举报
第三章复变函数的积分.docx_第1页
第1页 / 共13页
第三章复变函数的积分.docx_第2页
第2页 / 共13页
第三章复变函数的积分.docx_第3页
第3页 / 共13页
第三章复变函数的积分.docx_第4页
第4页 / 共13页
第三章复变函数的积分.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

第三章复变函数的积分.docx

《第三章复变函数的积分.docx》由会员分享,可在线阅读,更多相关《第三章复变函数的积分.docx(13页珍藏版)》请在冰豆网上搜索。

第三章复变函数的积分.docx

第三章复变函数的积分

第三章复变函数的积分

§1.复积分的概念

一.复积分的定义与计算

设C为平面上给定的一条光滑(或按段光滑)曲线,如果选定C的两个可能方向中的一个作为正方向(或正向),那么我们就把C理解为带有方向的曲线,称为有向曲线.

如果A到B作为曲线C的正向,那么B到A就是曲线C的负向,

定义:

设C为z平面上一条以A为起点,以B为终点的简单光滑曲线,复变函数

在C上有定义.在曲线C上任取

将C分为n个小弧段,(

)在每个小弧段上任取一点

,作和式

若当

时,该式的极限存在,且与小弧段的分法及

的取法无关,则称此极限值为复变函数

在C上从A到B的复积分,记作

;若曲线方向改为由B到A,则积分记作

;当C为简单闭曲线时,则此积分记作

.(规定逆时针方向为C的正向)

定理1设

在光滑曲线C上连续,则积分

存在,且为

(注:

上式在形式上可看做函数

与微分

相乘后得到的,这样便于记忆)

特别地,若C的参数方程为:

),则有

y

例1计算

,其中C是如图所示:

(1)从点1到点i的直线段

(2)从点1到点0的直线段

,再从点0到点的直线段i的直线段

所连接成的折线段

=

+

.

例2计算

,其中n为任何整数,C为以

为中心,r为半径的圆周.

例3计算

其中C为从原点到点3+4i的直线段.

二.复积分的基本性质

(1)

(2)

(3)

;

(4)

其中

(5)

.(积分估值)

例4设C为从原点到点3+4i的直线段,试求积分

模的一个上界。

例5试证:

.

§2.柯西积分定理

定理2(柯西定理)设函数

在单连通域D内解析,则

在D内任一简单闭曲线C上的积分一定为零,即

.

注:

当积分曲线C为一般闭曲线时结论依然成立.

定理3设函数

在单连通域D内解析,

为D内任意两点,

为连接

且完全含于D内的两条简单曲线,则

.

例6计算积分

其中C是圆周

的上半圆周从0到2.

例7

 

定理4(闭路变形原理)设

是两条简单

闭曲线,

含于

的内部.

所围成的二连通域内解析,且在闭域

上连续,则

.

其中

均按逆时针方向取向.

推论(复合闭路定理)设C为多连通域D内的一条简单闭曲线,

是在C内部的简单闭曲线,它们互不包含也互不相交,且以

为边界的区域全部含于D.如果

在D内解析,则有

其中

均按左手法则取正向.

例8计算

其中C为包含0与1的简单闭曲线.

定义:

若函数

在单连通域D内解析,

为D内任意定点,

为D内任意动点,C为以

为起点,以

为终点,且全部含于D内的简单曲线,由积分

所确定的复变函数

称为

在单连通域D内以

为起点的变上限积分(或不定积分),即

.

定理5若函数

在单连通域D内解析,那么,变上限积分所确定的函数

也在D内解析,且

.

定义:

设在单连通域D内,若函数

恒满足

,则称

的一个不定积分或原函数.

定理6(复积分的牛顿——莱布尼兹公式)

设函数

在单连通域D内解析,

的一个原函数,则

其中

为D内的点.

例8计算积分

均为有限复数.

例9计算

其中C是从-i到i的直线段.

§3.柯西积分公式

问题:

 

根据闭路变形原理知,该积分值不随闭曲线C的变化而改变,求这个值.

定理7(柯西积分公式)设函数

在简单闭曲线C所围成的区域内解析,在

上连续,

为D内任意一点,则

.

关于柯西积分公式的说明:

(1)把函数在C内部任一点的值用它在边界上的值表示.(这是解析函数的又一特征)

(2)公式不但提供了计算某些复变函数沿闭路积分的一种方法,而且给出了解析函数的一个积分表达式.(这是研究解析函数的有力工具)

(3)在复积分中,称

为柯西积分.

推论1(平均值公式)设函数

在圆域

内解析,在圆周

上连续,则

.

在圆心的值等于它在圆周上的算术平均值.

推论2设函数

在简单闭曲线

所围成的二连域D内解析,并在

上连续,

的内部,

为D内任意一点,则

.

其中

均取逆时针方向.

例10求下列积分的值:

(1)

(2)

例11计算积分

其中C为不经过0及1点的简单闭曲线.

例12

定理8(最大模原理)设函数

在区域D内解析,又

在区域D内不为常数,则在D内,

没有最大值.

推论1在区域D内解析的函数,若其模在D的内点达到最大值,则此函数必为常数.

推论2若函数

在区域D内解析,在

上连续,则

必在D的边界上达到最大值.

最大模原理说明了解析函数在区域边界上的最大模可以限制区域内的最大模.这也是解析函数所特有的性质.

例13设函数f(z)在全平面解析,又对任意r>0,令

求证:

M(r)是r的单调上升函数.

§4.解析函数的高阶导数

定理9设函数

在简单闭曲线C所围成的区域D内解析,在

上连续,则

的各阶导函数均在D内解析,且对为D内任意一点

,有

说明:

定理9的作用通常不在于通过积分来求导,而在于通过求导来计算某种类型的积分.

例14求下列积分的值:

(1)

(2)

例15

定理10(柯西不等式)设函数

在圆域

内解析,又

,则有不等式

恒成立.

在整个复平面解析的函数称为整函数,根据柯西不等式可以得到一个关于整函数的结论.

刘维尔定理有界整函数必为常数.

例16(代数学基本原理)在z平面上,n次多项式

至少有一个零点.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1