高三二轮力学与运用学综合.docx

上传人:b****9 文档编号:29154107 上传时间:2023-07-20 格式:DOCX 页数:13 大小:134.93KB
下载 相关 举报
高三二轮力学与运用学综合.docx_第1页
第1页 / 共13页
高三二轮力学与运用学综合.docx_第2页
第2页 / 共13页
高三二轮力学与运用学综合.docx_第3页
第3页 / 共13页
高三二轮力学与运用学综合.docx_第4页
第4页 / 共13页
高三二轮力学与运用学综合.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

高三二轮力学与运用学综合.docx

《高三二轮力学与运用学综合.docx》由会员分享,可在线阅读,更多相关《高三二轮力学与运用学综合.docx(13页珍藏版)》请在冰豆网上搜索。

高三二轮力学与运用学综合.docx

高三二轮力学与运用学综合

知识点:

1.功和功率的概念

2.动能定理,动量定理

3.能量守恒

4.动量守恒(矢量)

5.由已知想可知,问啥求啥的解题套路

考题类型:

题型一功和功率

1.如图所示,木块M上表面是水平的,当木块m置于木块M上,并与木块M一起沿光滑斜面由静止开始下滑,在下滑过程中()

A.重力对木块m做正功

B.木块M对木块m的支持力做负功

C.木块M对木块m的摩擦力做负功

D.木块m所受合外力对木块m做正功

2.质量为m的汽车在平直路面上启动,启动过程的速度图象如图所示,从t1时刻起汽车的功率保持不变,整个运动过程中汽车所受阻力恒为Ff,则(  )

A.0~t1时间内,汽车的牵引力等于m

B.t1~t2时间内,汽车的功率等于(m

+Ff)v1

C.汽车运动的最大速度v2=(

+1)v1

D.t1~t2时间内,汽车的平均速度小于

题型二动能定理

4.在北戴河旅游景点之一的南戴河滑沙场有两个坡度不同的滑道AB和AB’(均可看作斜面).甲、乙两名旅游者分别乘两个完全相同的滑沙撬从A点由静止开始分别沿AB和AB’滑下,最后都停在水平沙面BC上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑的,滑沙者保持一定姿势坐在滑沙撬上不动.则下列说法中正确的是

A.甲在B点的速率一定大于乙在B’点的速率

B.甲滑行的总路程一定大于乙滑行的总路程

C.甲全程滑行的水平位移一定大于乙全程滑行的水平位移

D.甲、乙克服摩擦力做的功一定相同

5.质量均为m的A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,撤去F1、F2后受摩擦力的作用减速到停止,其V-t图象如图所示,则下列说法正确的是:

()

A.F1、F2大小相等

B.A、B受摩擦力大小相等 

C.F1、F2对A、B做功之比为1:

1

D.全过程中摩擦力对A、B做功之比为1:

2

6.如图所示,一根跨越光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点),a站于地面,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态,当演员b摆至最低点时,a刚好对地面无压力,不计空气阻力,则演员a质量与演员b质量之比为__________。

8.如图所示的“S”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,放置在竖直平面内,轨道弯曲部分是由两个半径相等的半圆对接而成,圆半径比细管内径大得多,轨道底端与水平地面相切,轨道在水平方向不可移动.弹射装置将一个小球(可视为质点)从a点水平弹射向b点并进入轨道,经过轨道后从最高点d水平抛出(抛出后小球不会再碰轨道),已知小球与地面ab段间的动摩擦因数μ=0.2,不计其他机械能损失,ab段长L=1.25m,圆的半径R=0.1m,小球质量m=0.01kg,轨道质量为M=0.26kg,g取10m/s2,求:

(1)若v0=5m/s,小球从最高点d抛出后的水平位移.

(2)若v0=5m/s,小球经过轨道的最高点d时,管道对小球作用力的大小和方向.

(3)设小球进入轨道之间,轨道对地面的压力大小等于轨道自身的重力,当v0至少为多少时,小球经过两半圆的对接处c点时,轨道对地面的压力为零.

9.如图所示在工厂的流水线上安装的足够长的水平传送带。

用水平传送带传送工件,可大大提高工作效率,水平传送带以恒定的速度v=2m/s运送质量为m=0.5kg的工件。

工件都是以v0=1m/s的初速度从A位置滑上传送带,工件与传送带之间的动摩擦因数μ=0.2,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带。

取g=10m/s2,求:

(1)工件经多长时间停止相对滑动;

(2)在正常运行状态下传送带上相邻工件间的距离;

(3)摩擦力对每个工件做的功;

(4)每个工件与传送带之间的摩擦产生的内能。

 

10.如图所示,物体A放在足够长的木板B上,木板B静止于水平面。

t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零,加速度aB=1.0m/s2的匀加速直线运动。

已知A的质量mA和B的质量mg均为2.0kg,A、B之间的动摩擦因数µ1=0.05,B与水平面之间的动摩擦因数µ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10m/s2。

求:

(1)物体A刚运动时的加速度aA

(2)t=1.0s时,电动机的输出功率P;

(3)若t=1.0s时,将电动机的输出功率立即调整为P`=5W,并在以后的运动过程中始终保持这一功率不变,t=3.8s时物体A的速度为1.2m/s。

则在t=1.0s到t=3.8s这段时间内木板B的位移为多少?

 

11.如图所示,在长为L的轻杆中点A和端点B各固定一质量均为m的小球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速释放摆下。

求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?

题型三能量守恒

12.如图所示,质量为m的小球A沿高度为h、倾角为θ的光滑斜面以初速v0滑下。

另一质量与A相同的小球B自相同高度由静止落下,结果两球同时落地。

下列说法正确的是

A.重力对两球做的功相同

B.落地前的瞬间A球的速度大于B球的速度

C.落地前的瞬间A球重力的瞬时功率大于B球重力的瞬时功率

D.两球重力的平均功率相同

13.如图所示,一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固定于斜面体顶端的小滑轮O,倾角为θ=30°的斜面体置于水平地面上.A的质量为m,B的质量为4m.开始时,用手托住A,使OA段绳恰处于水平伸直状态(绳中无拉力),OB绳平行于斜面,此时B静止不动.将A由静止释放,在其下摆过程中,斜面体始终保持静止,下列判断中正确的是(  )

A.物块B受到的摩擦力先减小后增大

B.地面对斜面体的摩擦力方向一直向右

C.小球A的机械能守恒

D.小球A的机械能不守恒,A、B系统的机械能守恒

16.如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数为μ,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求此过程中:

(1)物体A向下运动刚到C点时的速度;

(2)弹簧的最大压缩量;

(3)弹簧中的最大弹性势能.

 

17.如图所示,水平轨道PAB与

圆弧轨道BC相切于B点,其中,PA段光滑,AB段粗糙,动摩擦因数μ=0.1,AB段长度L=2m,BC段光滑,半径R=1m.轻质弹簧劲度系数k=200N/m,左端固定于P点,右端处于自由状态时位于A点.现用力推质量m=2kg的小滑块,使其缓慢压缩弹簧,当推力做功W=25J时撤去推力.已知弹簧弹性势能表达式EP=

kx2其中,k为弹簧的劲度系数,x为弹簧的形变量,重力加速度取g=10m/s2.

(1)求推力撤去瞬间,滑块的加速度;

(2)求滑块第一次到达圆弧轨道最低点B时对B点的压力F;

(3)判断滑块能否越过C点,如果能,求出滑块到达C点的速度vC和滑块离开C点再次回到C点所用时间t,如果不能,求出滑块能达到的最大高度h.

 

18.如图所示,斜面轨道AB与水平面之间的夹角θ=53°,BD为半径R=4m的圆弧形轨道,且B点与D点在同一水平面上,在B点,轨道AB与圆弧形轨道BD相切,整个光滑轨道处于竖直平面内,在A点,一质量为m=1kg的小球由静止滑下,经过B、C点后从D点斜抛出去.设以竖直线MDN为分界线,其左边为阻力场区域,右边为真空区域.小球最后落到地面上的S点处时的速度大小vS=8m/s,已知A点距地面的高度H=10m,B点距地面的高度h=5m.g取10m/s2,cos53°=0.6,求:

(1)小球经过B点时的速度大小;

(2)小球经过圆弧轨道最低处C点时对轨道的压力;

(3)若小球从D点抛出后,受到的阻力F阻与其瞬时速度的方向始终相反,求小球从D点至S点的过程中阻力F阻所做的功.

 

19.如图所示,质量为m的滑块,放在光滑的水平平台上,平台右端B与水平传送带相接,传送带的运行速度为v0,长为L.今将滑块缓慢向左压缩固定在平台上的轻弹簧,到达某处时突然释放.当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ.

(1)试分析滑块在传送带上的运动情况.

(2)若滑块离开弹簧时的速度大于传送带的速度,求释放滑块时,弹簧具有的弹性势能.

(3)若滑块离开弹簧时的速度大于传送带的速度,求滑块在传送带上滑行的整个过程中产生的热量.

 

20.如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向.现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升.若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?

已知重力加速度为g.

 

21.如图所示,光滑固定的竖直杆上套有一个质量m=0.4kg的小物块A,不可伸长的轻质细绳通过固定在墙壁上、大小可忽略的定滑轮D,连接小物块A和小物块B,虚线CD水平,间距d=1.2m,此时连接小物块A的细绳与竖直杆的夹角为37°,小物块A恰能保持静止.现在在小物块B的下端挂一个小物块Q(未画出),小物块A可从图示位置上升并恰好能到达C处.不计摩擦和空气阻力,cos37°=0.8、sin37°=0.6,重力加速度g取10m/s2.求:

(1)小物块A到达C处时的加速度大小;

(2)小物块B的质量;

(3)小物块Q的质量.

题型四动量守恒定律

22.在原子核物理中,研究核子与核关联的最好途径是“双电荷交换反应”.这类反应的前半部分过程和下述力学模型类似.两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示.C与B发生碰撞并立即结成一个整体D.在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变.然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连.过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失).已知A、B、C三球的质量均为m.

(1)求弹簧长度刚被锁定时A球的速度;

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能.

 

23.如图所示,质量为mB=2kg的平板车B上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一块质量为mA=2kg的物体A,一颗质量为m0=0.01kg的子弹以v0=600m/s的水平初速度瞬间射穿A后,速度变为v=100m/s,已知A、B之间的动摩擦因数不为零,且A与B最终达到相对静止.求:

(1)物体A的最大速度vA;

(2)平板车B的最大速度vB.

 

24.如图所示,质量为m的木块可视为质点,置于质量也为m的木盒内,木盒底面水平,长l=0.8m,木块与木盒间的动摩擦因数μ=0.5,木盒放在光滑的地面上,木块A以v0=5m/s的初速度从木盒左边开始沿木盒底面向右运动,木盒原静止.当木块与木盒发生碰撞时无机械能损失,且不计碰撞时间,取g=10m/s2.问:

(1)木块与木盒无相对运动时,木块停在木盒右边多远的地方?

(2)在上述过程中,木盒与木块的运动位移大小分别为多少?

题型五力学综合

25.光滑水平面上放着质量mA=1kg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49J。

在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。

放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C。

取g=10m/s2,求:

(1)绳拉断后瞬间B的速度vB的大小;

(2)绳拉断过程绳对B的冲量I的大小;

(3)绳拉断过程绳对A所做的功W。

 

26.如图所示,在同一竖直平面上,质量为2m的小球A静止在光滑斜面的底部,斜面高度为H=2L。

小球受到弹簧的弹性力作用后,沿斜面向上运动。

离开斜面后,达到最高点时与静止悬挂在此处的小球B发生弹性碰撞,碰撞后球B刚好能摆到与悬点O同一高度,球A沿水平方向抛射落在水平面C上的P点,O点的投影O´与P的距离为L/2。

为m,悬绳长L,视两球为质点。

重力加速度为g,不计空气阻力。

求:

(1)球B在两球碰撞后一瞬间的速度大小;

(2)球A在两球碰撞后一瞬间的速度大小;

(3)弹簧的弹性力对球A所做的功。

 

27.如图所示,质量为m3=3kg的滑道静止在光滑的水平面上,滑道的AB部分是半径为R=0.15m的四分之一圆弧,圆弧底部与滑道水平部分相切,滑到水平部分右端固定一个轻弹簧。

滑道除CD部分粗糙外其他部分均光滑。

质量为m2=2kg的物体2(可视为质点)放在滑道上的B点,现让质量为m1=1kg的物体1(可视为质点)自A点由静止释放。

两物体在滑道上的C点相碰后粘为一体(g=10m/s2)。

求:

(1)物体1从释放到与物体2相碰的过程中,滑道向左运动的距离;

(2)若CD=0.1m,两物体与滑道的CD部分的动摩擦因数都为μ=0.1,求在整个运动过程中,弹簧具有的最大弹性势能;

(3)物体1、2最终停在滑道上何处。

 

29.如图所示,在光滑的水平地面上有一块长木板,其左端固定一挡板,挡板和长木板的总质量为m1=3kg,其右端放一质量为m2=1kg的小滑块,长木板的右端到挡板的距离为L=1m,整个装置处于静止状态。

现对小滑块施加一水平拉力,将它拉到长木板的正中央时立即撤去拉力,此过程中拉力做功W=20J。

此后小滑块与挡板碰撞(碰撞过程无机械能损失,碰撞时间极短),最终小滑块恰好未从长木板上掉下来。

在小滑块与长木板发生相对运动的整个过程中,系统因摩擦产生热量Q=12J。

(1)小滑块最终的速度大小;

(2)碰撞结束时,小滑块与长木板的速度;

(3)在小滑块与长木板发生相对运动的整个过程中,小滑块运动的位移大小。

 

33.如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:

(1)物块A在与挡板B碰撞前瞬间速度v的大小;

(2)弹簧最大压缩量为d时的弹性势能Ep(设弹簧处于原长时弹性势能为零).

 

35.如图所示,在光滑的水平地面上,质量为M=3.0kg的长木板A的左端,叠放着一个质量为m=1.0kg的小物块B(可视为质点),处于静止状态,小物块与木板之间的动摩擦因数μ=0.30。

在木板A的左端正上方,用长为R=0.8m的不可伸长的轻绳将质量为m=1.0kg的小球C悬于固定点O点。

现将小球C拉至上方使轻绳拉直且与水平方向成θ=30°角的位置由静止释放,到达O点的正下方时,小球C与B发生碰撞且无机械能损失,空气阻力不计,取g=10m/s2.求:

(1)小球C与小物块B碰撞前瞬间轻绳对小球的拉力;

(2)木板长度L至少为多大时,小物块才不会滑出木板.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1