六年级数学上总结OK.docx

上传人:b****9 文档编号:29133595 上传时间:2023-07-20 格式:DOCX 页数:14 大小:72.25KB
下载 相关 举报
六年级数学上总结OK.docx_第1页
第1页 / 共14页
六年级数学上总结OK.docx_第2页
第2页 / 共14页
六年级数学上总结OK.docx_第3页
第3页 / 共14页
六年级数学上总结OK.docx_第4页
第4页 / 共14页
六年级数学上总结OK.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

六年级数学上总结OK.docx

《六年级数学上总结OK.docx》由会员分享,可在线阅读,更多相关《六年级数学上总结OK.docx(14页珍藏版)》请在冰豆网上搜索。

六年级数学上总结OK.docx

六年级数学上总结OK

2016至2017人教版六年级上数学在知识点总结

第一章、分数乘法

(一)分数乘法的意义:

1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:

×5表示求5个

的和是多少?

2、分数乘分数是求一个数的几分之几是多少。

例如:

×

表示求

是多少?

(二)、分数乘法的计算法则:

1、分数与整数相乘:

分子与整数相乘的积做分子,分母不变。

(整数和分母约分)

2、分数与分数相乘:

用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

二、分数乘法的解决问题

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、画线段图:

(1)两个量的关系:

画两条线段图;

(2)部分和整体的关系:

画一条线段图。

2、找单位“1”:

在分率句中分率的前面;或“占”、“是”、“比”的后面

3、求一个数的几倍:

一个数×几倍;求一个数的几分之几是多少:

一个数×

4、写数量关系式技巧:

(1)“的”相当于“×”“占”、“是”、“比”相当于“=”

(2)分率前是“的”:

单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思:

单位“1”的量×(1

分率)=分率对应量

第三章、分数除法

一、倒数

1、倒数的意义:

乘积是1的两个数互为倒数。

强调:

互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:

(1)、求分数的倒数:

交换分子分母的位置。

(2)、求整数的倒数:

把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:

把带分数化为假分数,再求倒数。

(4)、求小数的倒数:

把小数化为分数,再求倒数。

3、1的倒数是1;0没有倒数。

因为1×1=1;0乘任何数都得0,

(分母不能为0)

4、对于任意数

,它的倒数为

;非零整数

的倒数为

;分数

的倒数是

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

二、分数除法

1、分数除法的意义:

乘法:

因数×因数=积除法:

积÷一个因数=另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):

(1)、当除数大于1,商小于被除数;

(2)、当除数小于1(不等于0),商大于被除数;

(3)、当除数等于1,商等于被除数。

4、“

”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

三、分数除法解决问题

(未知单位“1”的量(用除法):

已知单位“1”的几分之几是多少,求单位“1”的量。

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:

单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思:

单位“1”的量×(1

分率)=分率对应量

2、解法:

(建议:

最好用方程解答)

(1)方程:

根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):

分率对应量÷对应分率=单位“1”的量

3、求一个数是另一个数的几分之几:

就一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:

两个数的相差量÷单位“1”的量或:

①求多几分之几:

大数÷小数–1

②求少几分之几:

1-小数÷大数

总结:

分数乘除法(判断分数应用题中单位“1”)

【基本原则】 

一、基本思路:

分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。

所以单位1的判定,就是看把谁平均分了,就把谁看作单位

1.谁的几分之几,谁就把谁看作单位1。

.如一台电视机降价

男生比女生多全班的

.把全班人数看作单位1。

.      

2.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:

(2)班男生比女生多12。

理解为男生比女生多女生的12,所以把女生人数为标准,看作单位“1”, 

3.看在谁的基础上增加或减少,那个基础量就是单位“1”

例如,水结成冰后体积增加了

,把水看作单位“1”,冰融化成水后,体积减少了

把冰看作单位“1” 

二、单位“1”的应用题:

       

单位1的量×分率=分率对应量分率对应量÷分率=单位1的量 

 我们在解决分数乘法应用题时,一般有两种类型:

求一个数的几分之分是多少?

我们确定这个数是单位“1”,然后用乘法计算,公式=单位“1”的量×几分之分,例子书上17的例1、做一做、还有练习四。

还有就是一个数比另一个数多(少)几分之分的应用题,一般“比”后面的数就是单位“1”,公式=单位“1”的量×(1+几分几分)或单位“1”的量×(1—几分几分)

例子:

甲数比乙数多3分之2,就是把乙数看作单位“1”,求 甲数的公式=乙数的量×(1+

);如果把多改成少,那公式=乙数的量×(1—

)。

  例子:

甲数比乙数多3分之2,就是把乙数看作单位“1”,求 乙数的公式=甲数的量÷(1+

);如果把多改成少,那公式=乙数的量÷(1—

)。

  

怎么样画分数应用题的线段图 

第一步、先认真审题,通过读题,找出题目中的单位“1”,画一条线段表示单位“1”,

并在单位上面标上具体的数字。

 

第二步:

根据已知条件画线段,一般都画在单位“1”那条线段上,也可以自己在下面画线段,但是一定要标上所对应的分率。

 

第三步:

在线段图上标上问题。

 

第四步:

利用线段图理解,可以列出算式,还可以利用线段图检查自己做的对不对。

 

例,说出下面各题是把谁看做单位“1” 

(1)男生人数比女生人数多

,把                       看作单位“1”。

 

(2)男生人数比女生人数多全班的

,把                    看作单位“1”。

 

(3)水结成冰后体积增加了

,把                      看作单位“1”。

 

(4)冰融化成水后,体积减少了

把                    看作单位“1”。

 

(5)今年的产量相当于去年的

,把                    看作单位“1”。

 

第二章、位置与方向

一、确定物体位置的方法:

1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺) 

二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

 

三、位置关系的相对性:

1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

 

第四章、比

1、比的意义:

两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

 

3、区分比和比值

比:

表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:

相当于商,是一个数,可以是整数,分数,也可以是小数。

4、 比和除法、分数的联系:

前项

比号“:

后项

比值

除法

被除数

除号“÷”

除数

分数

分子

分数线“—”

分母

分数值

5、比和除法、分数的区别:

除法是一种运算,分数是一个数,比表示两个数的关系。

6、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:

0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:

被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:

分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:

比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

①用比的前项和后项同时除以它们的最大公因数。

(1)②两个分数的比:

用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:

向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。

注意:

最后结果要写成比的形式。

如:

15∶10=15÷10=

=3∶2

5.按比例分配:

把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

如:

已知两个量之比为

,则设这两个量分别为

6、路程一定,速度比和时间比成反比。

(如:

路程相同,速度比是4:

5,时间比则为5:

4)

工作总量一定,工作效率和工作时间成反比。

(如:

工作总量相同,工作时间比是3:

2,工作效率比则是2:

3)

第五章、圆的认识

一、认识圆

1、圆的定义:

圆是由曲线围成的一种平面图形。

2、圆心:

将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O表示。

它到圆上任意一点的距离都相等.

3、半径:

连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:

通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的

用字母表示为:

d=2r或r=

8、轴对称图形:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

(经过圆心的任意一条直线或直径所在的直线)

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有:

角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:

长方形

只有3条对称轴的图形是:

等边三角形

只有4条对称轴的图形是:

正方形;

有无数条对称轴的图形是:

圆、圆环。

第六章、百分数

一、百分数的意义和写法

1、百分数的意义:

表示一个数是另一个数的百分之几。

百分数是指的两个数的比,因此也叫百分率或百分比。

2、千分数:

表示一个数是另一个数的千分之几。

3、百分数和分数的主要联系与区别:

(1)联系:

都可以表示两个量的倍比关系。

(2)区别:

①、意义不同:

百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

4、百分数的写法:

通常不写成分数形式,而在原来分子后面加上“%”来表示。

二、百分数和分数、小数的互化

(一)百分数与小数的互化:

1、小数化成百分数:

把小数点向右移动两位,同时在后面添上百分号。

2.百分数化成小数:

把小数点向左移动两位,同时去掉百分号。

(二)百分数的和分数的互化

1、百分数化成分数:

先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

2、分数化成百分数:

①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

二、百分数解决问题

(一)一般应用题

1、常见的百分率的计算方法:

①合格率=

②发芽率=

③出勤率=

④达标率=

⑤成活率=

⑥出粉率=

⑦烘干率=

⑧含水率=

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

(一般出粉率在70、80%,出油率在30、40%。

2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:

单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思:

单位“1”的量×(1

分率)=分率对应量

3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

解法:

(建议:

最好用方程解答)

(1)方程:

根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法):

分率对应量÷对应分率=单位“1”的量

4、求一个数比另一个数多(少)百分之几的问题:

两个数的相差量÷单位“1”的量×100%或:

1求多百分之几:

(大数÷小数–1)×100%

②求少百分之几:

(1-小数÷大数)×100%

第七章、形统计图

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:

1、条形统计图:

可以清楚的看出各种数量的多少。

2、折线统计图:

不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:

能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1