新人教版小学六年级数学下册单元教案.docx
《新人教版小学六年级数学下册单元教案.docx》由会员分享,可在线阅读,更多相关《新人教版小学六年级数学下册单元教案.docx(38页珍藏版)》请在冰豆网上搜索。
新人教版小学六年级数学下册单元教案
本册教材分析
这一册教材包括下面一些内容:
负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。
圆柱与圆锥、比例和整理和复习是本册教材的重点教学内容。
在数与代数方面,这一册教材安排了负数和比例两个单元。
结合生活实例使学生初步认识负数,了解负数在实际生活中的应用。
比例的教学,使学生理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。
在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱、圆锥特征和有关知识的探索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计算的基本方法,促进空间观念的进一步发展。
在统计方面,本册教材安排了有关数据可能产生误导的内容。
通过简单事例,使学生认识到利用统计图表虽便于作出判断或预测,但如不认真分析也有可能获得不准确的信息导致错误判断或预测,明确对统计数据进行认真、客观、全面的分析的重要性。
在用数学解决问题方面,教材一方面结合圆柱与圆锥、比例、统计等知识的学习,教学用所学的知识解决生活中的简单问题;另一方面安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,经历探究“抽屉原理”的过程,体会如何对一些简单的实际问题“模型化”,从而学习用“抽屉原理”加以解决,感受数学的魅力,发展学生解决问题的能力。
本册教材根据学生所学习的数学知识和生活经验,安排了多个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。
整理和复习单元是在完成小学数学的全部教学内容之后,引导学生对所学内容进行一次系统的、全面的回顾与整理,这是小学数学教学的一个重要环节。
通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完善头脑中的数学认知结构,为初中的数学学习打下良好的基础;同时进一步提高学生综合运用所学知识分析问题和解决问题的能力。
这一册教材的教学目标是,使学生:
1.了解负数的意义,会用负数表示一些日常生活中的问题。
2.理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,会用比例知识解决比较简单的实际问题;能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估计另一个量的值。
3.会看比例尺,能利用方格纸等形式按一定的比例将简单图形放大或缩小。
4.认识圆柱、圆锥的特征,会计算圆柱的表面积和圆柱、圆锥的体积。
5.能从统计图表准确提取统计信息,正确解释统计结果,并能作出正确的判断或简单的预测;初步体会数据可能产生误导。
6.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
7.经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。
8.通过系统的整理和复习,加深对小学阶段所学的数学知识的理解和掌握,形成比较合理的、灵活的计算能力,发展思维能力和空间观念,提高综合运用所学数学知识解决问题的能力。
9.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
10.养成认真作业、书写整洁的良好习惯。
本册教学时间安排:
一、负数(3课时)
二、圆柱与圆锥(9课时)
1.圆柱………………………………………………………6课时左右
2.圆锥………………………………………………………2课时左右
整理和复习……………………………………………………1课时
三、比例(14课时)
1.比例的意义和基本性质…………………………………4课时左右
2.正比例和反比例的意义…………………………………4课时左右
3.比例的应用………………………………………………5课时左右
整理和复习…………………………………………………1课时
自行车里的数学……………………………………………1课时
四、统计(2课时)
节约用水……………………………………………………1课时
五、数学广角(3课时)
六、整理和复习(27课时)
1.数与代数…………………………………………………10课时左右
2.空间与图形………………………………………………9课时左右
3.统计与概率………………………………………………4课时左右
4.综合应用…………………………………………………4课
第一单元负数
单元内容:
教材P2-9,教参P16-28
教材说明:
本单元内容是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情境初步认识负数。
《标准》第二学段这部分内容的具体目标是:
“在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。
”以往负数的教学安排在中学阶段,现在安排在本单元主要是考虑到负数在生活中有着广泛的应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的基础。
在此基础上,初步认识负数,能进一步丰富学生对数概念的认识,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。
在实际生活中存在很多具有相反意义的量,比如,气温的零上和零下,存折上现金的存入和支取,水位高度的上升和下降,海拔高度的高于海平面和低于海平面,等等。
为了表示这样两种相反意义的量,还用学生原有的数概念知识就不够了,这样就自然引入了负数的认识。
教材首先通过学生熟悉的生活情境如气温(例1)、存折(例2)中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义,接下来通过用负数表示日常生活中的简单问题加深对负数意义的理解。
在此基础上,例3让学生在直线上表示出正数和负数,初步建立数轴的模型,形式数的比较完整的认知结构,例4借助数轴对气温进行排序让学生初步辨别正数、0和负数之间的大小关系。
本单元教材在编排上有以下几个特点。
1.选取学生熟悉的生活素材,加深对负数意义的理解。
为了帮助学生更好的理解负数的意义,体会正数和负数可以表示两种相反意义的量,教材注意结合学生熟悉的生活情境,选取学生感兴趣的素材,唤起学生已有的生活经验,使他们在具体的情境中认识负数。
例如,例1通过冬天教室里和教室外的气温对比,室内、室外的气温分别是零上16℃和零下16℃,来引入负数。
因为气温是学生每天都能接触到的信息,从气温引入能让学生感受生活中出现负数的必要性。
再如,例2通过明细中存入和支取的对比,进一步体会生活中用正负数表示两种相反意义的量。
另外,在练习中还安排了用正负数表示相对于海平面的海拔高度、相对于北京时间的其他地区的时间,等等。
2.初步建立数轴的模型,渗透数形结合的思想。
在学生初步认识负数后,例3安排了一个活动情境,在直线上表示从一点向两个相反方向运动后的情形,也就是在直线上表示正数、0和负数的内容,帮助学生进一步感受负数的意义并初步建立数轴的模型。
例4进一步让学生把未来一周每天的最低气温在数轴上表示出来,借助数轴来比较数的大小。
利用学生对温度高低的亲身体验理解正数、0和负数的大小,初步体会数轴上数的顺序,完成对数的结构的初步构建。
单元教学目标:
1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3.能借助数轴初步学会比较正数、0和负数之间的大小。
单元教学时间:
大约3课时
第一课时
教学内容:
认识负数,教科书第2~4页例1、例2,教参P19-22
学情分析:
负数是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情境初步认识负数。
以往负数的教学安排在中学阶段,现在安排在本单元主要是考虑到负数在生活中有着广泛的应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的基础。
在此基础上,初步认识负数,能进一步丰富学生对数概念的认识,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。
正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教学具准备:
多媒体课件、温度计、练习纸、卡片等。
教学时间:
教学过程:
一、创设情境,提出数学问题(感受生活中的相反现象)
1、游戏:
我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。
游戏规则:
老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五
(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。
(亏了500元)。
④零上10摄式度(零下10摄式度)。
3、谈话:
陈老师的一位朋友喜欢旅游,4月下旬,他又打算去几个旅游城市走一走。
我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。
下面就请大家一起和我走进天气预报。
(天气预报片头)
二、组织有效活动,探究数学本质
教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:
点击南京出示温度计和南京的图片。
首先来看一下南京的气温。
这里有个温度计。
我们先来认识温度计,请大家仔细观察:
这样的一小格表示多少摄式度呢?
5小格呢?
10小格呢?
B、现在你能看出南京是多少摄式度吗?
(是0℃。
)你是怎么知道的?
(那里有个0,表示0摄式度)。
(2)上海的气温:
上海的最低气温是多少摄式度呢?
(在温度计上拨一拨)拨的时候是怎样想的呢?
(在零刻度线以上四格)
指出:
上海的气温比0℃要高,是零上4摄式度。
(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:
北京又是多少摄式度呢?
与南京的0℃比起来,又怎样了呢?
(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?
(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?
(4)比较:
现在我们已经知道了这三个地方的最低气温。
仔细观察上海和北京的最低气温,它们一样吗?
(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。
+4也可以直接写成4,把正号省略了。
所以同学们所说的4℃也就是+4℃。
(板书)
② 北京的气温比0℃低,是零下4摄式度。
我们可以用-4℃来表示零下4摄式度(板书-4)。
跟老师一起来读一下。
写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:
通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:
学生看温度计,写出各地的温度,并读一读。
(写在卡片上)3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:
通过刚才的学习,我们得出:
以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、致力核心问题,建立数学模型
学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?
世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。
最近经国家测绘局公布了珠峰的最新海拔高度。
老师把有关网页带来了。
(课件出现网页,上面有简单的文字介绍)。
谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。
(课件动态地演示珠穆朗玛峰的海拔图)。
从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。
(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?
(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。
大家再想想:
你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:
珠穆朗玛峰的海拔可以记作:
+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:
-155米。
(板书)
(2)小结:
以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。
那么你们观察一下这些数,它们一样吗?
你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:
因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。
提出疑问:
0到底归于哪一类?
(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:
我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:
(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。
同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。
0就象一条分界线,把正数和负数分开了,它谁都不属于。
但对于正数和负数来说,它却必不可少。
我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。
(板书)正数都大于0,负数都小于0。
这节课我们就和大家一起来认识正数和负数。
(板书:
认识正数和负数)
四、设计有效检测,解决实际问题
1.练习一第2、3题
2.你知道吗:
水沸腾时的温度是____。
水结冰时的温度是____。
地球表面的最低温度是 。
3.讨论生活中的正数和负数
(1)存折:
这里的-800表示什么意思?
(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:
这里的1和-1表示什么意思?
(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。
老师现在要到33层应该按几啊?
要到地下3层呢?
六、升华经验成果,深化数学内涵
这节课我们一起认识了正数和负数。
在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
第二课时
教学内容:
比较正数和负数的大小。
教科书P5-7例3和例4,教参P22-27
学情分析:
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:
负数与负数的比较。
教学具准备:
教学时间:
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-85.6+0.9-+0-82
2、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
二、组织有效活动,解决数学问题
(一)教学例3:
1、怎样在数轴上表示数?
(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。
学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?
(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:
我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?
从0起往左依次是?
你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。
如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:
做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:
在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:
负数比0小,正数比0大,负数比正数小。
7、练习:
做一做第3题。
三、组织有效检测,解决实际问题
1、练习一第4、5题。
2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。
超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、升华经验成果,深化数学内涵
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
:
第三课时
教学内容:
负数练习课,补充整理。
练习目标:
1、引导学生对个单元的知识加以梳理归纳,在同学们交流与反思中,使知识得以整理内化。
2、在完成了作业本习题后的重点题讲评,突出重点突破难点。
练习重、难点:
引导学生对个单元的知识加以梳理归纳,使知识得以整理内化教具学具准备:
教学时间:
教学过程:
一、知识整理,梳理成表。
数
整数
小数
分数
负整数
自然数
正小数
负小数
正分数
负分数
0
正整数
数
正数
正整数、正分数、正小数
0
负数
负整数、负分数、负小数
二、讲解学生困惑和疑难问题
选择:
1、一月份哈尔滨温度达到()度左右。
A-22 B22 C10
2、一月份南昌温度达到()度左右。
A35 B-20 C4
判断:
1、不带正号的数都是负数。
( )
2、整数都是正数。
( )
3、因为7大于6所以-7大于-6。
( )
4、最小的负数是 -1。
( )
三、作业超市(学生可以选择性地做或者小组讨论)
1、读一读。
(1)开启后的盒装牛奶应贮藏于0℃—4℃,并在48小时内喝完。
(2)水沸腾的温度是100℃。
水结冰的温度是0℃。
(3)地球表面的最低气温在南极,是-88.3℃。
(4)月球表面的最高气温是127℃,最低气温是-183℃。
(5)我国发射的神舟六号飞船在太空中向阳面的温度为100℃以上,而背阳面却低于-100℃,但通过隔热和控制,太空舱内的温度始终保持在21℃,非常适宜宇航员工作。
2、填一填
(1)如果张军向东走30米,记作+30米,那么李刚向西走50米,记作( )米。
如果张军向北走40米,记作+40米,那么李刚走“-40米”表示他向()走了( )米。
(2) +8.7读作( ),“-”读作( )。
(3)海平面的海拔高度记作0m,海拔高度为+450米,表示( ),海拔高度为-102米,表示( )。
(4)如果把平均成绩80分做原点,( )记为0分,90分表示( )分,-18分表示( )分。
3、比一比。
-7()-5 1.5() 0()-2.4 -3.1()—3.1
4、判一判。
在8.2、-4、0、6、-27中,正数有3个。
( )
5、选一选。
(1)以明明家为起点,向东走为正,向西走为负。
如果明明从家走了+30米,又走了-30米,这时明明离家的距离是( )米。
A、30 B、-30 C、60 D、0
(2)数轴上,-2在-1的( )边。
A、左 B、右 C、北 D、无法确定
(3)规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是( )
A、8吨记为-8吨 B、15吨记为+5吨
C、6吨记为-4吨 D、+3吨表示重量为13吨
(4)一种饼干包装袋上标着:
净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于( )克。
A、155 B、150 C、145 D、160
四、拓展练习:
在数轴上,从表示0的点出发,向右移动3个单位长度到A点,A点表示的数是( );从表示0的点出发向左移动6个单位长度到B点,B点表示的数是( )。
五、引导学生全课总结
第二单元圆柱与圆锥
单元内容:
圆柱与圆锥的认识、圆柱的表面积、圆柱的体积和圆锥的体积。
教科书P10-28,教参P29-52
教学要求:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。
会推导表面积、侧面积、体积的公式,认识“进一法”取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理性的解决问题的能力。
教学重点:
圆柱体体积的推导。
教学难点:
(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(3)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
课时安排:
1、圆柱的认识 6课时
2、圆锥的认识 2课时
3、整理和复习 1课
第一课时 圆柱的认识
教学内容:
教科书第10—12页圆柱的认识,练习二的第1—4题.教参P32-35
学情分析:
圆柱是人们在生产、生活中经常遇到的几何形体,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:
认识圆柱的特征。
教学难点:
看懂圆柱的平面图。
教学具准备:
教学时间:
教学过程:
一、创设情境,提出数学问题
1、出示实物图,请同学们看屏幕,这些都是我们生活中常见的物体,你能按形状将他们分一分类吗?
2、在这些形体中,哪些我们已经认识,并且知道它们的特征了?
3、剩下的这些形体我们将陆续进行学习,今天我们就先来认识圆柱体,简称圆柱(板书课题)。
突出两个圆柱图。
4、请同学们看屏幕上的2个圆柱,再看一看桌上老师为你们准备的3个圆柱,它们都是直直的(点击,抽象出圆柱的平面图形),而且上下一样粗,象这样的圆柱就叫直圆柱,我们小学阶段学习的都是直圆柱。
5、