线性规划的灵敏度分析实验报告.docx

上传人:b****9 文档编号:28960000 上传时间:2023-07-20 格式:DOCX 页数:30 大小:18.50KB
下载 相关 举报
线性规划的灵敏度分析实验报告.docx_第1页
第1页 / 共30页
线性规划的灵敏度分析实验报告.docx_第2页
第2页 / 共30页
线性规划的灵敏度分析实验报告.docx_第3页
第3页 / 共30页
线性规划的灵敏度分析实验报告.docx_第4页
第4页 / 共30页
线性规划的灵敏度分析实验报告.docx_第5页
第5页 / 共30页
点击查看更多>>
下载资源
资源描述

线性规划的灵敏度分析实验报告.docx

《线性规划的灵敏度分析实验报告.docx》由会员分享,可在线阅读,更多相关《线性规划的灵敏度分析实验报告.docx(30页珍藏版)》请在冰豆网上搜索。

线性规划的灵敏度分析实验报告.docx

线性规划的灵敏度分析实验报告

《运筹学/线性规划》实验报告

实验室:

实验日期:

实验项目

线性规划的灵敏度分析

系别

数学系

姓名

学号

班级

指导教师

成绩

一实验目的

掌握用Lingo/Lindo对线性规划问题进行灵敏度分析的方法,理解解报告的内容。

初步掌握对实际的线性规划问题建立数学模型,并利用计算机求解分析的一般方法。

二实验环境

Lingo软件

三实验内容(包括数学模型、上机程序、实验结果、结果分析与问题解答等)

例题2-10

MODEL:

[_1]MAX=2*X_1+3*X_2;

[_2]X_1+2*X_2+X_3=8;

[_3]4*X_1+X_4=16;

[_4]4*X_2+X_5=12;

END

编程

sets:

is/1..3/:

b;

js/1..5/:

c,x;

links(is,js):

a;

endsets

max=@sum(js(J):

c(J)*x(J));

@for(is(I):

@sum(js(J):

a(I,J)*x(J))=b(I));

data:

c=23000;

b=81612;

a=12100

40010

04001;

enddata

end

灵敏度分析

Rangesinwhichthebasisisunchanged:

 

ObjectiveCoefficientRanges

CurrentAllowableAllowable

VariableCoefficientIncreaseDecrease

X

(1)2.000000INFINITY0.5000000

X

(2)3.0000001.0000003.000000

X(3)0.01.500000INFINITY

X(4)0.00.1250000INFINITY

X(5)0.00.75000000.2500000

RighthandSideRanges

RowCurrentAllowableAllowable

RHSIncreaseDecrease

28.0000002.0000004.000000

316.0000016.000008.000000

412.00000INFINITY4.000000

当b2在[8,32]之间变化时最优基不变

最优解

Globaloptimalsolutionfoundatiteration:

0

Objectivevalue:

14.00000

VariableValueReducedCost

B

(1)8.0000000.000000

B

(2)16.000000.000000

B(3)12.000000.000000

C

(1)2.0000000.000000

C

(2)3.0000000.000000

C(3)0.0000000.000000

C(4)0.0000000.000000

C(5)0.0000000.000000

X

(1)4.0000000.000000

X

(2)2.0000000.000000

X(3)0.0000001.500000

X(4)0.0000000.1250000

X(5)4.0000000.000000

A(1,1)1.0000000.000000

A(1,2)2.0000000.000000

A(1,3)1.0000000.000000

A(1,4)0.0000000.000000

A(1,5)0.0000000.000000

A(2,1)4.0000000.000000

A(2,2)0.0000000.000000

A(2,3)0.0000000.000000

A(2,4)1.0000000.000000

A(2,5)0.0000000.000000

A(3,1)0.0000000.000000

A(3,2)4.0000000.000000

A(3,3)0.0000000.000000

A(3,4)0.0000000.000000

A(3,5)1.0000000.000000

RowSlackorSurplusDualPrice

114.000001.000000

20.0000001.500000

30.0000000.1250000

40.0000000.000000

例题2-11

模型

MAX2X

(1)+3X

(2)

SUBJECTTO

2]X

(1)+2X

(2)+X(3)=12

3]4X

(1)+X(4)=16

4]4X

(2)+X(5)=12

END

编程

sets:

is/1..3/:

b;

js/1..5/:

c,x;

links(is,js):

a;

endsets

max=@sum(js(J):

c(J)*x(J));

@for(is(I):

@sum(js(J):

a(I,J)*x(J))=b(I));

data:

c=23000;

b=121612;

a=12100

40010

04001;

enddata

end

最优解

Globaloptimalsolutionfoundatiteration:

2

Objectivevalue:

17.00000

VariableValueReducedCost

B

(1)12.000000.000000

B

(2)16.000000.000000

B(3)12.000000.000000

C

(1)2.0000000.000000

C

(2)3.0000000.000000

C(3)0.0000000.000000

C(4)0.0000000.000000

C(5)0.0000000.000000

X

(1)4.0000000.000000

X

(2)3.0000000.000000

X(3)2.0000000.000000

X(4)0.0000000.5000000

X(5)0.0000000.7500000

A(1,1)1.0000000.000000

A(1,2)2.0000000.000000

A(1,3)1.0000000.000000

A(1,4)0.0000000.000000

A(1,5)0.0000000.000000

A(2,1)4.0000000.000000

A(2,2)0.0000000.000000

A(2,3)0.0000000.000000

A(2,4)1.0000000.000000

A(2,5)0.0000000.000000

A(3,1)0.0000000.000000

A(3,2)4.0000000.000000

A(3,3)0.0000000.000000

A(3,4)0.0000000.000000

A(3,5)1.0000000.000000

RowSlackorSurplusDualPrice

117.000001.000000

20.0000000.000000

30.0000000.5000000

40.0000000.7500000

最优解(4,3,2,0,0)最优值z=17

分析

Rangesinwhichthebasisisunchanged:

ObjectiveCoefficientRanges

CurrentAllowableAllowable

VariableCoefficientIncreaseDecrease

X

(1)2.000000INFINITY2.000000

X

(2)3.000000INFINITY3.000000

X(3)0.01.500000INFINITY

X(4)0.00.5000000INFINITY

X(5)0.00.7500000INFINITY

RighthandSideRanges

RowCurrentAllowableAllowable

RHSIncreaseDecrease

212.00000INFINITY2.000000

316.000008.00000016.00000

412.000004.00000012.00000

例题2-12

模型

MAX2X

(1)+3X

(2)

SUBJECTTO

2]X

(1)+2X

(2)+X(3)=8

3]4X

(1)+X(4)=16

4]4X

(2)+X(5)=12

END

编程

sets:

is/1..3/:

b;

js/1..5/:

c,x;

links(is,js):

a;

endsets

max=@sum(js(J):

c(J)*x(J));

@for(is(I):

@sum(js(J):

a(I,J)*x(J))=b(I));

data:

c=23000;

b=81612;

a=12100

40010

04001;

enddata

end

灵敏度分析

Rangesinwhichthebasisisunchanged:

ObjectiveCoefficientRanges

CurrentAllowableAllowable

VariableCoefficientIncreaseDecrease

X

(1)2.000000INFINITY0.5000000

X

(2)3.0000001.0000003.000000

X(3)0.01.500000INFINITY

X(4)0.00.1250000INFINITY

X(5)0.00.75000000.2500000

RighthandSideRanges

RowCurrentAllowableAllowable

RHSIncreaseDecrease

28.0000002.0000004.000000

316.0000016.000008.000000

412.00000INFINITY4.000000

由灵敏度分析表知道C2在【0,4】之间变化时,最优基不变。

第六题

模型

MODEL:

[_1]MAX=3*X_1+X_2+4*X_3;

[_2]6*X_1+3*X_2+5*X_3<=450;

[_3]3*X_1+4*X_2+5*X_3<=300;

END

编程

sets:

is/1..2/:

b;

js/1..3/:

c,x;

links(is,js):

a;

endsets

max=@sum(js(J):

c(J)*x(J));

@for(is(I):

@sum(js(J):

a(I,J)*x(J))<=b(I));

data:

c=314;

b=450300;

a=635

345;

enddata

End

最优解Globaloptimalsolutionfound.

Objectivevalue:

270.0000

Infeasibilities:

0.000000

Totalsolveriterations:

2

VariableValueReducedCost

B

(1)450.00000.000000

B

(2)300.00000.000000

C

(1)3.0000000.000000

C

(2)1.0000000.000000

C(3)4.0000000.000000

X

(1)50.000000.000000

X

(2)0.0000002.000000

X(3)30.000000.000000

A(1,1)6.0000000.000000

A(1,2)3.0000000.000000

A(1,3)5.0000000.000000

A(2,1)3.0000000.000000

A(2,2)4.0000000.000000

A(2,3)5.0000000.000000

RowSlackorSurplusDualPrice

1270.00001.000000

20.0000000.2000000

30.0000000.6000000

第一问:

A生产50B生产0C生产30有最高利润270元;

第二问:

单个价值系数和右端系数变化范围的灵敏度分析结果

Rangesinwhichthebasisisunchanged:

ObjectiveCoefficientRanges

CurrentAllowableAllowable

VariableCoefficientIncreaseDecrease

X

(1)3.0000001.8000000.6000000

X

(2)1.0000002.000000INFINITY

X(3)4.0000001.0000001.500000

RighthandSideRanges

RowCurrentAllowableAllowable

RHSIncreaseDecrease

2450.0000150.0000150.0000

3300.0000150.000075.00000

当A的利润在【2.4,4.8】之间变化时,原最优生产计划不变。

第三问:

模型

MODEL:

[_1]MAX=3*X_1+X_2+4*X_3+3*X_4;

[_2]6*X_1+3*X_2+5*X_3+8*X_4<=450;

[_3]3*X_1+4*X_2+5*X_3+2*X_4<=300;

END

编程

sets:

is/1..2/:

b;

js/1..4/:

c,x;

links(is,js):

a;

endsets

max=@sum(js(J):

c(J)*x(J));

@for(is(I):

@sum(js(J):

a(I,J)*x(J))<=b(I));

data:

c=3143;

b=450300;

a=6358

3452;

enddata

End

最优解

Globaloptimalsolutionfound.

Objectivevalue:

275.0000

Infeasibilities:

0.000000

Totalsolveriterations:

2

VariableValueReducedCost

B

(1)450.00000.000000

B

(2)300.00000.000000

C

(1)3.0000000.000000

C

(2)1.0000000.000000

C(3)4.0000000.000000

C(4)3.0000000.000000

X

(1)0.0000000.1000000

X

(2)0.0000001.966667

X(3)50.000000.000000

X(4)25.000000.000000

A(1,1)6.0000000.000000

A(1,2)3.0000000.000000

A(1,3)5.0000000.000000

A(1,4)8.0000000.000000

A(2,1)3.0000000.000000

A(2,2)4.0000000.000000

A(2,3)5.0000000.000000

A(2,4)2.0000000.000000

RowSlackorSurplusDualPrice

1275.00001.000000

20.0000000.2333333

30.0000000.5666667

利润275元值得生产。

第四问

由单个价值系数和右端系数变化范围的灵敏度分析结果

Rangesinwhichthebasisisunchanged:

ObjectiveCoefficientRanges

CurrentAllowableAllowable

VariableCoefficientIncreaseDecrease

X

(1)3.0000001.8000000.6000000

X

(2)1.0000002.000000INFINITY

X(3)4.0000001.0000001.500000

RighthandSideRanges

RowCurrentAllowableAllowable

RHSIncreaseDecrease

2450.0000150.0000150.0000

3300.0000150.000075.00000

当购买150吨时此时可买360元在减去购买150吨的进价60元此时可获利300超过了原计划,应该购买。

第七题

模型

MODEL:

[_1]MAX=30*X_1+20*X_2+50*X_3;

[_2]X_1+2*X_2+X_3<=430;

[_3]3*X_1+2*X_3<=410;

[_4]X_1+4*X_2<=420;

[_5]X_1+X_2+X_3<=300;

[_6]X_2>=70;

[_7]X_3<=240;

END

编程

sets:

is/1..6/:

b;

js/1..3/:

c,x;

links(is,js):

a;

endsets

max=@sum(js(J):

c(J)*x(J));

@sum(js(J):

a(1,J)*x(J))<=b

(1);

@sum(js(J):

a(2,J)*x(J))<=b

(2);

@sum(js(J):

a(3,J)*x(J))<=b(3);

@sum(js(J):

a(4,J)*x(J))<=b(4);

@sum(js(J):

a(5,J)*x(J))>=B(5);

@sum(js(J):

a(6,J)*x(J))<=b(6);

data:

c=302050;

b=43041042030070240;

a=121

302

140

111

010

001;

enddata

end

最优解

Globaloptimalsolutionfound.

Objectivevalue:

12150.00

Infeasibilities:

0.000000

Totalsolveriterations:

4

VariableValueReducedCost

B

(1)430.00000.000000

B

(2)410.00000.000000

B(3)420.00000.000000

B(4)300.00000.000000

B(5)70.000000.000000

B(6)240.00000.000000

C

(1)30.000000.000000

C

(2)20.000000.000000

C(3)50.000000.000000

X

(1)0.00000035.00000

X

(2)95.000000.000000

X(3)205.00000.000000

A(1,1)1.0000000.000000

A(1,2)2.0000000.000000

A(1,3)1.0000000.000000

A(2,1)3.0000000.000000

A(2,2)0.0000000.000000

A(2,3)2.0000000.000000

A(3,1)1.0000000.000000

A(3,2)4.0000000.000000

A(3,3)0.0000000.000000

A(4,1)1.0000000.000000

A(4,2)1.0000000.000000

A(4,3)1.0000000.000000

A(5,1)0.0000000.000000

A(5,2)1.0000000.000000

A(5,3)0.0000000.000000

A(6,1)0.0000000.000000

A(6,2)0.0000000.000000

A(6,3)1.0000000.000000

RowSlackorSurplusDualPrice

112150.001.000000

235.000000.000000

30.00000015.00000

440.000000.000000

50.00000020.00000

625.000000.000000

735.000000.000000

最优解(095205)最优值12150

第一问

模型

MODEL:

[_1]MAX=30*X_1+20*X_2+60*X_3;

[_2]X_1+2*X_2+X_3<=430;

[_3]3*X_1+2*X_3<=410;

[_4]X_1+4*X_2<

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 可爱清新

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1