远距离室内测温系统说明书.docx

上传人:b****3 文档编号:2888122 上传时间:2022-11-16 格式:DOCX 页数:12 大小:518.52KB
下载 相关 举报
远距离室内测温系统说明书.docx_第1页
第1页 / 共12页
远距离室内测温系统说明书.docx_第2页
第2页 / 共12页
远距离室内测温系统说明书.docx_第3页
第3页 / 共12页
远距离室内测温系统说明书.docx_第4页
第4页 / 共12页
远距离室内测温系统说明书.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

远距离室内测温系统说明书.docx

《远距离室内测温系统说明书.docx》由会员分享,可在线阅读,更多相关《远距离室内测温系统说明书.docx(12页珍藏版)》请在冰豆网上搜索。

远距离室内测温系统说明书.docx

远距离室内测温系统说明书

第一章远距离室内温度测量系统

1.1远距离室内温度测量系统简介

温度是工业生产中常见的工艺参数之一,而且在许多的工程项目中温度指标也是不可或缺的重要参数。

因此,准确、方便地获取温度就显得尤为重要。

通常在工程项目中可能要测量多点的温度值,这就需要铺设大量的电缆,如果现场环境恶劣也会带来很大的难题,而且传统的温度测量只适用在静止的物体测量上。

采用无线测温方案能很好的解决这些问题。

无线温度测量系统的构成主要有两大部分:

上位机微处理器控制系统、下位机测量系统。

上位机微处理器控制系统是系统的核心,是负责与下位机通信并完成显示任务和控制功能的,具体由显示芯片、单片机和无线收发芯片三部分组成。

下位机测量系统负责对测量点的温度测量,并根据上位机的控制要求,把测量点的信息返回给上微机控制系统,具体由无线收发芯片,单片机,温度测量设备来完成。

1.2各模块及工作原理图

DS18B20型单总线智能温度传感器属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。

它具有体积小,接口方便,传输距离远等特点。

DS18B20的测温范围从-55℃至+125℃,并通过简单的编程实现9-12位的数字读数方式,可以分别在93.75ms和750ms内完成温度值转换和读取。

DS18B20外形简单且体积小,它只有三只管脚,分别是电源引脚VCC、接地引脚GND和输入/输出引脚DQ,仅通过单线接口DQ就可以完成于单片机的信息交流。

工作原理图如下:

 

无线温度采集系统是一种基于射频技术的无线温度检测装置。

本系统由传感器和接收机,以及显示芯片组成。

传感器部分由数字温度传感器芯片18B20,单片机89C52和低功耗传输单元NRF24L01等组成,传感器采用电源供电;接收机无线接收来自传感器的温度数据,经过处理、保存后在数码管上显示,存储的温度数据通过无线模块的发射端与接收端进行交换。

工作原理图如下:

本系统的温度采集与显示,无线的传输与对比均由单片机89C52来控制完成。

AT89C52不仅和80S51指令、管脚完全兼容,而且其片内的4K程序存储器是FLASH工艺的,这种工艺的存储器用户可以用电的方式瞬间擦出、改写,一般专为ATMELAT89Cxx做的编程器均带有这些功能。

这种单片机对开发设备的要求低,开发时间也大大缩短。

工作原理图如下:

经过无线传输后,温度数据信息将在共阴极数码管上进行显示,工作原理图如下:

 

第二章DS18B20单线数字温度传感器

2.1DS18B20简介

DS18B20的特性

常用的温度检测元件主要有热电偶、热敏电阻、热电阻Pt100等。

热电偶式传感器体积较大H变化率小导致灵敏度比较低;热敏电感测量的稳定性和复现性差,且变化率非线性;热电阻Pt100的缺点就是热响应比较慢,成品高。

本系统采用的DALLAR半导体公司的单总线数字式只能温度传感器DS18B20很好的改善了这些问题。

DS18B20型单总线智能温度传感器属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。

它具有体积小,接口方便,传输距离远等特点。

DS18B20的测温范围从-55℃至+125℃,并通过简单的编程实现9-12位的数字读数方式,可以分别在93.75ms和750ms内完成温度值转换和读取。

DS18B20外形简单且体积小,它只有三只管脚,分别是电源引脚VCC、接地引脚GND和输入/输出引脚DQ,仅通过单线接口DQ就可以完成于单片机的信息交流。

说明

DS18B20通过一个单线接口发送或接受信息,因此在中央微处理器和DS18B20之间仅需一条连接线(加上地线)。

用于读写和温度转换的电源可以从数据线本身获得,无需外部电源。

因为每个DS18B20都有一个独特的片序列号,所以多只DS18B20可以同时连在一根单线总线上,这样就可以把温度出传感器放在许多不同的地方。

这一特性在HVAC环境控制、探测建筑物、仪器或机器的温度以及过程检测和控制等方面非常有用。

引脚说明

16脚SS0P

PR35

符号

说明

9

1

GND

接地

8

2

DQ

数据输入/输出脚。

对于单线操作:

漏极开路。

7

3

VDD

可选的VDD引脚。

2.2DS18B20的工作原理

测温操作

DS18B20通过一种偏上温度测量技术来测量温度。

图4示出了温度测量电路的方框图。

 

温度/数据关系

温度℃

数据输出(二进制)

数据输出(十六进制)

+125

00FA

+25

0032

+1/2

0001

0

0000

-1/2

FFFF

-25

FFCE

-55

FF92

DS18B20是这样测温的:

用一个高温度洗漱的振荡器确定一个门周期,内部计数器在这个门周期内对一个低温度系数的振荡器的脉冲进行计数来得到温度值。

计数器被预置到对应于-55℃的一个值。

如果计数器在门周期结束前到达0,则温度寄存器(同样被预置到-55℃)的值增加,表明所测温度大于-55℃。

同时,计数器被复位到一个值,这个值由斜坡式累加器电路确定,斜坡式累加器电路用来补偿感温振荡器的抛物线特性。

然后计数器又开始计数知道0,如果门周期仍未结束,将重复这一过程。

斜坡式累加器用来补偿感温振荡器的非线性,以期在测温时获得比较高的分辨力。

这是通过改变计数器对温度每增加一度所需计数的值来实现的。

因此,要想获得所需的分辨力,必须同时知道在给定温度下计数器的值和每一度的计数值。

DS18B20内部对此计算的结果可提供0.5℃的分辨力。

温度以16bit带符号位扩展的二进制补码形式读出,表1给出了温度值和输出数据的关系。

数据通过单线接口一串行方式传输。

DS18B20测温范围-55℃~+125℃,一0.5℃递增。

如用于华氏温度,必须要用一个转换因子查找表。

注意DS18B20内温度表示为1/2℃LSB,如下所示9bit格式:

最高有效(符号)位被幅值充满存储器中两个字节温度寄存器的高MSB位,由这种“符号位扩展”产生出了示于表1的16bit温度读数。

第三章远距离无线传输

3.1NRF24L01简介

产品特性

2.4GHz全球开放ISM频段,最大0dBm发射功率,免许可证使用;支持六路通道的数据接收。

低工作电压:

1.9~3.6V低电压工作

高速率:

2Mbps,由于空中传输时间很短,极大的降低了无线传输中的碰撞现象(软件设置1Mbos或者2Mbps的空中传输速率)

多频点:

125频点,满足多点通信和跳频通信需要

超小型;neizhi2.4GHz天线,体积小巧,15×29mm(包括天线)

低功耗:

当工作在应答模式通信时,快速的空中传输及启动时间,极大的降低了电流消耗。

低应用成本:

NRF24L01集成了所有与RF协议相关的高速信号处理部分,比如:

西东重发丢失数据

饱和自动产生应答信号等,NRF24L01的SPI接口可以利用单片机的硬件SPI口连接或用单片机I/O口进行莫伊,内部有FIFO可以与各种高低速微处理器接口,便于使用低成本单片机

自动重发功能,自动检测和重发丢失的数据包,重发时间及重发次数可软件控制

自动存储未收到应答信号的数据包

自动应答功能,在收到有效数据后,模块自动发送应答信号,无须另行编程

载波检测CRC检测和点对多点通信地址控制

数据包传输错误计数器及载波检测功能可用于跳频设置

可同时设置流露接收通道地址,可有选择性的打开接收通道

标准插针Dip2.54MM间距接口,便于嵌入式应用

基本电气特性

参数

数值

单位

供电电压

1.9~3.6V

V

最大发射功率

0

dBm

最大数据传输率

2000

Kbps

发射模式下,电流消耗(0dBm)

11.3

mA

接收模式下电流消耗(2000kbps)

12.3

mA

温度范围

-40~+85

数据传输率为1000kbps下的灵敏度

-85

dBm

掉电模式下电流消耗

900

nA

 

模块结构和引脚说明

说明:

1)VCC脚接电压范围为1.9~3.6V之间,不能在这个区间之外,超过3.6V将会烧毁模块。

推荐电压3.3V左右。

2)除电源VCC和接地端,其余脚都可以直接和普通的5V单片机IO口直接相连,无需电平转换。

当然对3V左右的单片机更加适用了。

3)硬件上面没有SPI的单片机也可以控制本模块,用普通单片机IO口模拟SPI不需要单片机真正的串口接入,只需要普通的单片机IO口就可以了。

与51系列单片机PO口连接时需要加10K的上拉电阻,其余连接不需要。

3.2NRF24L01工作方式

NRF24L01有四种工作模式:

收发模式、配置模式、空闲模式、关机模式。

工作模式由PWR_UPregister、PRIM_RXregister和CE决定,详见下表:

模式

PWR_UP

PRIM_RX

CE

FIFO寄存器状态

接收模式

1

1

1

-

发射模式

1

0

1

数据在TXFIFI寄存器中

发射模式

1

0

1→0

停留在发射模式,直至数据发送完

待机模式2

1

0

1

TXFIFO为空

待机模式1

1

-

0

无正在传输的数据

掉电模式

0

-

-

-

3.2.1EnhancedShockBurstTM收发模式

EnhancedShockBurstTM收发模式下,使用片内的先入先出堆栈区,数据低速从微控制器送入,但高速(1Mbps)发射,这样可以尽量节能,因此,使用低速的微控制器也能得到很高的射频数据发射速率。

与射频协议相关的所有高速信号处理都在片内进行,这种做法有三大好处:

尽量节能;低的系统费用(低速微处理器也能进行高速射频发射);数据在空中停留时间短,抗干扰性高。

EnhancedShockBurstTM技术同时也减小了整个系统的平均工作电流。

在EnhancedShockBurstTM收发模式下,NRF24L01自动处理字头和CEC校验码。

在接收数据时,自动把字头和CRC校验码移去。

在发送数据时,自动加上字头和CRC校验码,在发送模式下,置CE为高,至少10μs,将时发送过程完成。

EnhancedShockBurstTM发射流程

A.把接收机的地址和要发送的数据按时序送入NRF24L01;

B.配置CONFIG寄存器,使之进入发送模式;

C.微控制器把CE置高(至少10μs),激发NRF24L01进行EnhancedShockBurstTM发射;

D.NRF24L01的EnhancedShockBurstTM发射

(1)给射频前端供电;

(2)射频数据打包(加字头、CRC校验码);(3)高速发射数据包;(4)发射完成,NRF24L01进入空闲状态。

EnhancedShockBurstTM接收流程

A.配置本机地址和要接收的数据包大小;

B.配置CONFIG使之进入接收模式,把CE置高。

C.130μs后,NRF24L01进入监视状态,等待数据包的到来;

D.当接收到正确的数据包(正确的的地址和CRC校验码),NRF24L01自动把字头、地址和CEC校验位移去;

E.NRF24L01通过把STATUS寄存器的RX_DR职位(STATUS一般引起微控制器中断)通知微控制器;

F.微控制器把数据从NewMsg——RF24L01读出;

G.所有数据读取完毕后,可以清楚STATUS寄存器。

NRF24L01可以进入四种主要的模式之一。

3.2.2空闲模式

NRF24L01的空闲模式是为了减小

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1