粪大肠菌的去除
污水中粪大肠菌群等菌类的去除主要靠强氧化性物质使菌体有机物分解或丧失功能,使细菌的代谢和繁殖过程遭到破坏,从而达到灭菌效果。
污水处理工艺的选择
根据以上分析,如果要求在去除有机物的同时能实现除磷脱氮的功能,在生化处理系统中必须具有水解酸化和好氧的单元,只有这几个单元的有机组合才可以达到去除有机物和N、P的功能。
常用的生化处理工艺主要有厌氧处理工艺、水解酸化工艺和好氧处理工艺,现将各种处理方法的特点陈述如下:
厌氧生化法
厌氧生化是指在无分子氧条件下通过厌氧微生物的作用,将废水中的各种复杂有机物分解转化为甲烷和二氧化碳等物质的过程,该工艺可用于中高浓度的有机废水处理。
厌氧生化处理的典型工艺为UASB(上流式厌氧污泥床)工艺,该工艺在国内外有较多的成功实例。
厌氧生化法与好氧生化法相比具有以下优点:
1)应用范围广;
2)能耗低;
3)负荷高;
4)剩余污泥量少;
5)厌氧污泥可以长期存放,在停止运行一段时间后可迅速启动。
但是厌氧生化法也存在以下缺点:
1)厌氧微生物增殖缓慢,因而调试启动时间长,一般需要年时间;
2)出水往往达不到排放标准,需进一步处理,故一般在厌氧后串联好氧处理;
3)厌氧处理系统操作控制因素较复杂;
4)产生甲烷为易爆气体,若不加以利用,安全设置要求较高;
5)易产生硫化物,引起较大异味,造成空气污染。
MBR法
膜-生物反应器(MembraneBio-Reactor,MBR)为膜分离技术与生物处理技术有机结合之新型态废水处理系统。
MBR是膜分离技术与生物处理法的高效结合,其起源是用膜分离技术取代活性污泥法中的二沉池,进行固液分离。
这种工艺不仅有效地达到了泥水分离的目的,而且具有污水三级处理传统工艺不可比拟的优点:
1、高效地进行固液分离,其分离效果远好于传统的沉淀池,出水水质良好,出水悬浮物和浊度接近于零,可直接回用,实现了污水资源化。
2、膜的高效截留作用,使微生物完全截留在生物反应器内,实现反应器水力停留时间(HRT)和污泥龄(SRT)的完全分离,运行控制灵活稳定。
3、由于MBR将传统污水处理的曝气池与二沉池合二为一,并取代了三级处理的全部工艺设施,因此可大幅减少占地面积,节省土建投资。
4、利于硝化细菌的截留和繁殖,系统硝化效率高。
通过运行方式的改变亦可有脱氨和除磷功能。
5、由于泥龄可以非常长,从而大大提高难降解有机物的降解效率。
6、反应器在高容积负荷、低污泥负荷、长泥龄下运行,剩余污泥产量极低,由于泥龄可无限长,理论上可实现零污泥排放。
7、系统实现PLC控制,操作管理方便。
生物接触氧化处理
生物接触氧化法是一种介于活性污泥法和生物滤池之间的生物膜法工艺,接触氧化池内设有填料,部分微生物以生物膜的形式固着生长于填料表面,部分则是以絮状悬浮生长于水中,因此它兼有活性污泥法和生物滤池的特点。
生物接触氧化法工艺特征:
1)由于填料的比表面积大,池内充氧条件好,生物接触氧化池内单位容积的生物量都高于活性污泥法曝气池和生物滤池,因此生物接触氧化池具有较高的容积负荷;
2)由于相当一部分微生物附着生长在填料表面,生物接触氧化法不需要设有污泥回流系统,也不存在污泥膨胀问题,运行管理简便;
3)由于生物接触氧化池内生物固体量多,水流属于完全混合型,因此生物接触氧化池对水质水量的骤变有较强的适应能力。
4)采用的悬浮球填料。
具有良好的传质效果,对有机物去除效果高,耐腐蚀,不堵塞,易于安装,易于挂膜。
5)操作简单、运行方便,易于维护管理,不产生污泥膨胀现象,也不产生滤池蝇。
6)生物接触氧化处理技术具有多种净化功能,除有效地去除有机污染物外,对脱氮和除磷也有一定的效果。
由于采用了前置厌氧水解池,形成厌氧——好氧除磷脱氮工艺,具有一定的脱氮除磷作用。
生物脱氮过程由硝化和反硝化两步完成。
硝化是将氨氮氧化成硝酸盐,在好氧条件下完成。
反硝化是将硝酸盐还原成氮气从水中脱出,在缺氧条件(无分子氧但有硝酸盐态氧)下和具有有机物供给反硝化菌碳能源时才能完成。
因此传统的生物脱氮为硝化—反硝化工艺,在反硝化前要投加有机化学药剂,流程复杂,构筑物多。
前置反硝化脱氮技术,先将污水引入缺氧段,在其中以污水中的有机物作为碳能源,对硝酸盐进行反硝化脱氮,有机物得到初步降解;然后进入好氧段,其中有机物进一步降解和硝化。
生物除磷流程由厌氧段(无分子氧和硝酸盐态氧)、好氧段和二沉池组成。
活性污泥中的一些细菌具有在厌氧条件下释放磷和在好氧条件下过量吸收磷的特点,通过排放富磷剩余污泥将磷从水中去除。
消毒方法选择
次氯酸钠投加法
次氯酸钠(NaClO)是最原始的消毒处理方法之一。
该方法由于原料来源方便、产品稳定安全、运输方便等特点,应用较为广泛。
次氯酸钠作为商品在市场可以购买,也可以现场制作。
目前小型污水处理现场制作一般采用电解食盐法。
但次氯酸钠消毒能力弱,处理过程中带来废渣,正逐步被其它产品替代。
液氯法
液氯消毒以它消毒能力强、价格便宜广泛应用于污水处理的消毒。
液氯的含氯浓度高,有效氯含量达99%以上,比次氯酸钠溶液高5~10倍。
但氯气是一种有刺激性气味的黄色有毒气体,必须有专用的贮存设备和加氯设备。
目前,典型的加氯设备有人工定时开启式加氯和自动提升加氯。
但有关资料研究表明,液氯(Cl2)会与氨反应生成一氯胺、二氯胺及三氯胺而消耗液氯,也能形成有致癌作用的三卤甲烷(THM),加上液氯的不完全性,所以液氯消毒受到限制。
二氧化氯法
二氧化氯(ClO2)在水中的溶解度是氯的5倍,其氧化能力是氯气的215倍左右,是一种强氧化剂。
是国际上公认的含氯消毒中唯一的高效消毒剂。
它可以杀灭一切微生物,包括细菌繁殖体、细胞芽孢、真菌、分枝杆菌和病毒等。
它能有效地破坏水中的微量有机污染物,如苯并芘蒽醌、氯仿、四氯化碳、酚、氯酚、氰化物、硫化氢及有机硫化物等。
能很好地氧化水中一些还原状态的金属离子如Fe2+、Mn2+、Ni2+等。
二氧化氯最大的优点在于与腐殖质及有机物反应几乎不产生发散性有机卤化物,不生成并抑制生成有致癌作用的三卤甲烷,也不与氨及氨基化合物反应。
综上所述,本方案拟采用二氧化氯发生器制取二氧化氯的消毒方式。
本方案废水处理工艺流程
经过上述分析,结合我公司多年来对屠宰污水处理的经验,本方案拟采用格栅+集水+微滤+调节+AOO+二氧化氯消毒工艺,该工艺具有技术成熟、效果稳定、污染物去除彻底、操作方便、运行灵活等优点。
具体工艺流程如下:
五工艺分析
工艺流程简述
污水自流经过格栅滤出废渣、毛皮等大颗粒物质,然后进入集水池,集水池内加氢氧化钠调节PH到后用泵提升到微滤机,过滤后污水进入调节池,调节池的主要作用是调节水量,均衡水质,保证污水处理站正常运行,调节池出水通过提升泵提升进入气浮池,经气浮去除SS和动植物油后,进入AOO生化池,在A池中通过厌氧微生物对污水中的部分有机物进行降解,为后续的工艺创造条件,通过控制水解池的停留时间,使其发生水解和酸化作用,将大分子的难降解的有机物水解为小分子的有机物,提高污水处理效率。
A池出水进入两级O池,该池内部装有组合填料、高效微孔曝气器等。
大部分的污染物质在此得到去除,接触氧化池的一部分混合液回流到A池,经过反硝化反应可去除水中的氨氮,经AO处理后的污水进入二沉池,将大部分SS沉淀后出水进入消毒池,经二氧化氯消毒后达标排放。
二沉池剩余生化污泥排入污泥池,和气浮池污泥一起外运处理。
当设备故障需要检修时,污水排入事故池,设备检修完成后事故池水泵入系统处理。
工艺特点
1)工艺能耗小,工艺技术先进,运行成本低,具有节能,减少运行时间,减少人员班次和劳动强度等优点,适合于各种类型的屠宰水污水处理工程。
2)通过设置A池,提高污染物的去除率;生物接触氧化池水流属于完全混合型,能有效抵抗水质、水量变化的冲击负荷,提高处理装置运行的稳定性。
工艺设置了污泥回流,反硝化内回流,可有效提高系统的氨氮去除效率。
3)本装置采用先进、成熟的处理工艺,处理后水质指标达到国家要求标准。
4)本系统的控制系统,自动化程度高,运行管理简便。
5)无异味噪声低。
设备中A段生物处理工艺保持在水解酸化阶段,有效防止了臭味气体的产生。
电气系统及自动控制系统
系统采用PLC控制,实现对各机械设备及处理单元的自动和手动控制,按照PLC中编制好的程序顺序进行流量、加药、曝气、抽水等控制。
污水处理站控制可实现自控和手动两种控制,在自动化控制状态下,各个工艺运行根据自动控制程序和检测分析的运行数据自动进行各电气设备的启动和关闭,调整有关电机的运行频率,实行设备间操作互锁,阅读设备和电气运行参数,给出声光报警信号,切换备用设备。
在手动情况下,所有设备均在现场或控制操作台上手动执行,这时上位机可起到监视作用。
处理效率分析
序号
处理单元
主要污染物质(mg/L)
SS
COD
BOD
氨氮
动植物油
大肠杆菌
个/L
1
格栅
进水
250
3000
1600
100
130
108
出水
240
3000
1600
100
130
108
去除率%
—
—
—
—
—
2
微滤机
出水
120
2500
1300
100
130
108
去除率%
52
—
—
—
3
气浮池
出水
60
2000
1000
90
20
107
去除率%
50
20
10
90
4
A池
出水
120
1200
600
50
18
5×106
去除率%
—
40
40
10
50
5
一级O池
出水
120
300
150
15
12
106
去除率%
—
75
75
70
80
6
二级O池
出水
120
60
20
12
8
5×105
去除率%
—
80
20
50
7
二沉池
出水
40
60
20
12
8
5×105
去除率%
—
—
—
—
—
8
消毒池
出水
40
58
19
12
8
2000
去除率%
—
5
—
—
六主要构筑物与附属设备
设备选择原则
设备的选用直接影响着污水处理厂的造价、运行成本、维护频次和使用寿命,是决定污水处理厂建设成败的关键因素之一。
从向甲方提供最佳性价比的产品、维护甲方长期利益的角度出发,本设计在选择设备时遵循如下原则:
1)关键工艺路径上全部选用质量确信可靠的产品。
国内制造水平满足要求的,可以选用国际着名品牌的合资供应商;国内制造水平没有把握的,则选用进口设备。
2)考虑到今后维护的方便,国产设备尽量选用就近地区的产品,尤其是不便于运输的大型机械设备。
3)设备的整体档次和自动化水平应符合现代化屠宰场的标准和要求,尽量减少工人的劳动强度,改善工人的劳动环境。
4)对于可能造成人身伤害的化学药剂系统,尤其是储罐和输送管路,务必选用绝对安全的材质和制造商。
主要构筑物
格栅渠
格栅渠用来放置格栅,主要用于拦截较大颗粒物质。
格栅渠进水标高根据中水原水高度确定。
材质:
地下钢砼
设计尺寸:
**
附件:
机械格栅1套,B=500mm,b=20mm,N=
集水池
调节PH,提升水高程。
材质:
地下钢砼
设计尺寸:
**
附件:
NAOH投加器1台,
提升泵2台,
调节池
废水排放无规律性,污水处理工程需24h连续运转,所以必须设置调节池。
设置调节池的目的是使废水的水质、水量得到一定程度的缓冲和均衡,为后续处理工艺创造一个相对稳定的工作环境,减轻后续处理负担。
材质:
地下钢砼
设计尺寸:
15m*14m*
附件:
提升泵2台,
AOO生化池
A/O硝化反硝化系统由缺氧段与好氧段组成,具有生物脱氮功能。
缺氧池是在缺氧条件下,通过混合液回流,以原废水中的有机物作为反硝化细菌的碳源,使废水中的NO2-、NO3-还原成N2达到脱氮的作用,这样在去除有机物的同时氨氮含量得到有效降解。
缺氧池内设有穿孔曝气管,控制溶解氧<L。
缺氧池出水自流进入好氧池进行硝化反应,大量的有机物在此得以去除,氨氮的去除主要集中在缺氧-好氧段,氨氮的去除过程如下:
NH4++NO2+2H++H2O
(1)
NO2-+NO3-
(2)
6NO3-+2CH3OH6NO2-+2CO2+4H2O(3)
6NO2-+3CH3OH3N2+3CO2+3H2O+6OH-(4)
(1)
(2)为生物硝化过程,是在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程。
(3)(4)为生物反硝化过程,是在缺氧条件下,通过反硝化菌的作用,将NO2-—N和NO3-—N还原成N2的过程。
在生物反硝化过程中,同时也可使有机物氧化分解,从而降低废水中污染物含量。
本方案好氧处理采用目前应用最为广泛的生物处理工艺-生物接触氧化法作为本套工艺的主体工艺。
生物接触氧化是本套废水处理工程的主体工艺,是利用好氧微生物来氧化分解水中有机污染物。
微生物新陈代谢所需要的氧气由鼓风曝气装置供给。
好氧微生物为了自身的生命及生长繁殖,而以废水中有机物作为营养物进行合成和分解代谢的活动。
生化处理工艺的原理就是微生物把各种有机污染物作为营养食物,在微生物自身分解的生物酶的作用下,把它们分解为简单的化合物,从中获得构成本身细胞的材料和活动所需的能量,借以进行生长和繁殖等生命活动。
分解有机物的微生物主要是细菌,其它原生动物、后生动物也参与这一过程。
生物接触氧化法在氧化池内设置组合填料,采用鼓风曝气系统,填料的作用是给微生物提供生长附着床,同时扩大微生物的比表面积,使微生物迅速繁殖并进一步吸附水中呈悬浮、胶体和溶解状态的物质,逐渐形成生物膜,膜上的微生物在氧的参与下,对有机物进行降解,而曝气系统的曝气一方面提高了传氧速率,另一方面对生物膜起到了搅动作用加速了生物膜的更新,使生物膜活性提高,同时,部分脱落的生物膜漂浮在水中也起降解有机物的作用,因此,生物吸附接触氧化法是一种介于活性污泥法和生物滤池法之间的处理方法,兼有两种处理法的优点,且生物膜发展的每一阶段都是同时存在的,使去除有机物的能力稳定在一定的水平上,它克服了污泥膨胀,可以间歇运转,不需污泥回流。
与活性污泥法相比,生物接触氧化法具备如下优点:
①生物持有量高,可承受较高的负荷,可减少占地;
②对冲击负荷有较强的适应能力,在间歇运行条件下,仍能保持良好的处理效果,对排水不均匀的企业,具有实际意义;
③操作简便、运行方便、易于维护管理,无需污泥回流,不产生污泥膨胀。
④污泥生成量少。
与其它生物膜法相比,其特点为:
①工作环境卫生,不