2、判断三条线段a,b,c能否组成三角形:
(1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;
(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即
.
三、三角形中三角的关系
1、三角形内角和定理:
三角形的三个内角的和等于1800。
n边行内角和公式(n-2)
2、三角形按内角的大小可分为三类:
(1)锐角三角形,即三角形的三个内角都是锐角的三角形;
(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:
直角三角形的性质:
直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
4、直角三角形的面积等于两直角边乘积的一半。
四、三角形的三条重要线段
1、三角形的角平分线:
(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。
(内心)
3、三角形的中线:
(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
(2)三角形有三条中线,它们相交于三角形内一点。
(重心)
(3)三角形的中线把这个三角形分成面积相等的两个三角形
4、三角形的高线:
(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
(2)任意三角形都有三条高线,它们所在的直线相交于一点。
(垂心)(3)注意等底等高知识的考试
五、全等图形
1、两个能够重合的图形称为全等图形。
2、全等图形的性质:
全等图形的形状和大小都相同。
六、全等三角形
1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
八、全等三角形的判定
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
九、作三角形;十、利用三角形全等测距离;
十一、直角三角形全等的条件
在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
第六章 变量之间的关系
一、变量、自变量、因变量
1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
一.列表法。
采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
例1:
在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素。
据临床观察:
如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量(微克)与时间(分钟)之间的关系近似地满足下表:
时间
(分钟)
0
20
40
60
80
100
120
140
160
180
200
220
240
260
含药量
(微克)
0
2
4
6
5.7
5.2
4.8
4.4
4
3.6
3.2
2.8
2.4
2
(1)上表反映了哪两个变量之间的关系?
哪个是自变量?
哪个是因变量?
(2)当注射药液60分钟后血液中含药量是多少?
(3)据临床观察:
每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的。
如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?
这个有效时间有多长?
【解】
(1)上表反映了注射药液的时间和血液中的含药量这两个变量之间的关系,自变量是注射药液的时间,因变量是血液中的含药量。
(2)当注射药液60分钟后血液中含药量是6微克。
(3)据临床观察:
每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的。
如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过40分钟后控制病情开始有效,这个有效时间是120分钟(从表格中可以看出:
当注射药液达到40分钟时,血液中的含药量上升到4微克,之后继续上升至最高值为6微克,然后缓慢下降,当注射药液160分钟后,血液中的含药量下降至4微克,所以,如果按规定的剂量注射该药液后需要经过40分钟控制病情开始有效,这个有效时间为160分钟—40分钟=120分钟)。
二.关系式法。
关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
例2:
已知梯形上底的长是x,下底的长是15,高是8,梯形面积为y。
(原题见课本197页数学理解第1题)
(1)梯形面积y与上底长x之间的关系式是什么?
(2)用表格表示当x从10变到20时(每次增加1),y的相应值;
(3)当x每增加1时,y如何变化?
说说你的理由;
(4)当x=0时,y等于什么?
此时它表示的什么?
【解】
(1)梯形面积y与上底长x之间的关系式是y=4x+10。
(2)用表格表示当x从10变到20时(每次增加1),y的相应值如下表:
梯形的上底x
10
11
12
13
14
15
16
17
18
19
20
梯形的面积y
100
104
108
112
116
120
124
128
132
136
140
(3)当x每增加1时,y增加4。
(4)当x=0时,y等于60。
此时它表示的是三角形的面积。
三.图象法。
例3:
如图是某天温度变化的情况。
(原题见课本198页)
(1)上午9时的温度是多少?
12时呢?
(2)这一天的最高温度是多少?
是在几时达到的?
最低温度呢?
(3)这一天的温差是多少?
从最低温度到最高温度经过了多长时间?
(4)在什么时间范围内温度在上升?
在什么时间范围内温度在下降?
(5)图中A点表示的是什么?
B点呢?
【解】
(1)上午9时的温度是27℃,12时是31℃。
(2)这一天的最高温度是37℃,是在15时达到的,最低温度是23℃,是在3时达到的。
(3)这一天的温差(最高温度和最低温度的差值)是37℃—23℃=14℃,从最低温度到最高温度经过了15时—3时=12时。
(4)在3时到15时温度在上升,在0时到3时、15时到24时温度在下降。
(5)A点表示的是21时的温度是31℃,B点表示的是0时的温度是26℃。
一、概念:
变量:
在某一过程中发生变化的量,其中包括自变量与因变量。
自变量是最初变动的量,它在研究对象反应形式、特征、目的上是独立的;因变量是由于自变量变动而引起变动的量,它“依赖于”自变量的改变。
常量:
一个变化过程中数值始终保持不变的量叫做常量.
二、图像注意:
a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
三、事物变化趋势的描述
对事物变化趋势的描述一般有两种:
1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:
因变量y随着自变量x的增加(大)而增加(大));
2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:
因变量y随着自变量x的增加(大)而减小).
注意:
如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.
四、估计(或者估算)
对事物的估计(或者估算)有三种:
1.利用事物的变化规律进行估计(或者估算).例如:
自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;
2.利用图象:
首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3.利用关系式:
首先求出关系式,然后直接代入求值即可.
第七章生活中的轴对称
一、轴对称图形
如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
二、轴对称
对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:
这两个图形关于某条直线对称。
三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:
角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线
1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:
线段垂直平分线上的点到这条线段两端点的距离相等。
五、等腰三角形
1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;
3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
8、等腰三角形的两个底角相等,简写成“等边对等角”。
六、等边三角形1、等边三角形是指三边都相等的三角形,又称正三角形
2、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。
4、等边三角形的三边都相等,三个内角都是600。
七、轴对称的性质
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
2、关于某条直线对称的两个图形是全等图形。
3、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
九、镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向;
2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:
(1)利用镜子照(注意镜子的位置摆放);
(2)利用轴对称性质;
(3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面;(5)根据前面的结论在头脑中想象。