浙教版八年级数学上期末检测试题.docx

上传人:b****5 文档编号:2861690 上传时间:2022-11-16 格式:DOCX 页数:17 大小:155.77KB
下载 相关 举报
浙教版八年级数学上期末检测试题.docx_第1页
第1页 / 共17页
浙教版八年级数学上期末检测试题.docx_第2页
第2页 / 共17页
浙教版八年级数学上期末检测试题.docx_第3页
第3页 / 共17页
浙教版八年级数学上期末检测试题.docx_第4页
第4页 / 共17页
浙教版八年级数学上期末检测试题.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

浙教版八年级数学上期末检测试题.docx

《浙教版八年级数学上期末检测试题.docx》由会员分享,可在线阅读,更多相关《浙教版八年级数学上期末检测试题.docx(17页珍藏版)》请在冰豆网上搜索。

浙教版八年级数学上期末检测试题.docx

浙教版八年级数学上期末检测试题

期末综合自我评价

一、选择题(每小题2分,共20分)

1.下面四个标志中,是轴对称图形的是(D)

2.在平面直角坐标系中,点P(3,-2)关于y轴的对称点在(C)

A.第一象限B.第二象限

C.第三象限D.第四象限

3.使不等式x-2≥-3与2x+3<5同时成立的x的整数值是(C)

A.-2,-1,0B.0,1

C.-1,0D.不存在

4.一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是(C)

A.3cmB.4cm

C.7cmD.11cm

5.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元.如果购买金额不超过200元,且要求买的球拍尽可能多,那么小张同学应该买的球拍的个数是(B)

A.5B.6

C.7D.8

6.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P是BD的中点.若AD=6,则CP的长为(A)

A.3B.3.5

C.4D.4.5

(第6题)

  

(第7题)

 

7.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处.若∠2=40°,则图中∠1的度数为(A)

A.115°B.120°

C.130°D.140°

【解】 由折叠可得∠1=∠EFB′,∠B′=∠B=90°.

∵∠2=40°,∴∠CFB′=90°-40°=50°.

∵∠1+∠EFB′-∠CFB′=180°,

∴∠1+∠1-50°=180°,解得∠1=115°.

8.在平面直角坐标系中,将直线l1:

y=-2x-2平移后,得到直线l2:

y=-2x+4,则下列平移作法中,正确的是(A)

A.将直线l1向右平移3个单位

B.将直线l1向右平移6个单位

C.将直线l1向上平移2个单位

D.将直线l1向上平移4个单位

【解】 ∵将直线l1:

y=-2x-2平移后,得到直线l2:

y=-2x+4,

∴-2(x+a)-2=-2x+4或-2x-2+b=-2x+4,解得a=-3,b=6.

∴应将直线l1向右平移3个单位或向上平移6个单位.故选A.

9.已知A(x1,y1),B(x2,y2)为一次函数y=2x+1的图象上的两个不同的点,且x1x2≠0.若M=

,N=

,则M与N的大小关系是(C)

A.M>NB.M

C.M=ND.不确定

【解】 将y1=2x1+1,y2=2x2+1分别代入M,N,得M=

=2,N=

=2,

∴M=N.

10.如图,在等边三角形ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边三角形DPF,当点P从点E运动到点A时,点F运动的路径长是(A)

A.8B.10C.3πD.5π

导学号:

91354037

(第10题)

  

(第10题解)

 

【解】 如解图,连结DE,过点F作FH⊥BC于点H.

∵△ABC为等边三角形,∴∠B=60°.

过点D作DE′⊥AB,则∠BDE′=30°,

∴BE′=

BD=2,∴点E′与点E重合,

∴∠BDE=30°,DE=

=2

.

∵△DPF为等边三角形,

∴∠PDF=60°,DP=DF.

∴∠EDP+∠HDF=90°.

∵∠HDF+∠HFD=90°,

∴∠EDP=∠HFD.

在△DPE和△FDH中,∵

∴△DPE≌△FDH(AAS),∴FH=DE=2

.

∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2

.

当点P在点E处时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC.

当点P在点A处时,作等边三角形DAF2,过点F2作F2Q⊥BC,交BC的延长线于点Q,易得△DF2Q≌△ADE,∴DQ=AE=10-2=8,∴F1F2=DQ=8.

∴当点P从点E运动到点A时,点F运动的路径长是8.

二、填空题(每小题3分,共30分)

11.已知点A(x,4-y)与点B(1-y,2x)关于y轴对称,则点(x,y)的坐标为(1,2).

12.如果关于x的不等式(a+1)x>a+1(a≠-1)可以变形为x<1,那么a的取值范围是a<-1.

13.在△ABC中,AB=15,AC=13,高AD=12,则BC的长为14或4.

【解】 如解图①.

由勾股定理,得BD=

=9,CD=

=5,∴BC=BD+CD=14.

(第13题解)

如解图②,同理可得BD=9,CD=5,

∴BC=BD-CD=4.

(第14题)

14.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连结BD,则BD的长为4_

【解】 ∵△ABC和△DCE都是边长为4的等边三角形,

∴CB=CD,

∴∠BDC=∠DBC=30°.

又∵∠CDE=60°,∴∠BDE=90°.

在Rt△BDE中,DE=4,BE=8,

∴BD=

=4

.

15.有学生若干人,住若干间宿舍.若每间住4人,则有20人无法安排住宿;若每间住8人,则最后有一间宿舍不满也不空,则学生有__44__人.

【解】 设共有x间宿舍,则学生有(4x+20)人.

由题意,得0<4x+20-8(x-1)<8,

解得5

∵x为整数,∴x=6,即学生有4x+20=44(人).

16.若关于x的不等式组

无解,则a的取值范围是a≥-2.

【解】 解不等式①,得x>3+a。

解不等式②,得x<1.

∵不等式组

无解,

∴3+a≥1,即a≥-2.

17.已知一次函数y=2x+2a与y=-x+b的图象都经过点A(-2,a),且与x轴分别交于B,C两点,则△ABC的面积为__12__.

【解】 把点A(-2,a)的坐标分别代入y=2x+2a,y=-x+b,得

∴y=2x+8,y=-x+2.

易得点B(-4,0),C(2,0),

∴S△ABC=

×[2-(-4)]×4=12.

18.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=

,则AE=__2__.

(第18题))   

(第18题解))

【解】 如解图,过点A作AF⊥BD于点F.

∵∠DAB=90°,∠ABD=45°,

∴△ABD为等腰直角三角形,

∴AF为BD边上的中线,

∴AF=

BD.

∵AD=AB=

∴根据勾股定理,得BD=

=2

∴AF=

.

∵∠CDE=90°=∠AFE,∴CD∥AF,

∴∠EAF=∠DCA=30°,∴EF=

AE.

设EF=x,则AE=2x.

根据勾股定理,得x2+3=4x2,

解得x=1(负值舍去).

∴AE=2.

(第19题)

19.如图,两把完全相同的含30°角的三角尺叠放在一起,且∠DAB=30°.有下列结论:

①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG∶GE=

∶4.其中正确的是①②③(填序号).

【解】 由题意,得△ADE≌△ACB,

∴∠D=∠C,∠E=∠B,∠DAE=∠CAB=90°,AD=AC,

∴∠DAE-∠BAE=∠CAB-∠BAE,

∴∠CAF=∠DAG=30°.

∵∠B=∠30°,∴∠D=∠C=60°,

∴∠AGD=∠AFC=90°,∴AF⊥BC,故①正确.

在△ADG和△ACF中,

∴△ADG≌△ACF(ASA),故②正确.

∴AG=AF.

连结AO.

在Rt△AGO和Rt△AFO中,

∴Rt△AGO≌Rt△AFO(HL).

∴∠GAO=∠FAO.

∵∠DAE=90°,∠DAB=30°,

∴∠GAF=60°,∴∠GAO=∠FAO=30°,

∴∠AOC=∠OAB+∠B=60°,OA=OB,

∴△AOC是等边三角形,∴OC=OA=OB,

∴O为BC的中点,故③正确.

∵∠E=30°,∠AGE=90°,∴AE=2AG.

设AG=a,则AE=2a.由勾股定理,得GE=

a,

∴AG∶GE=a∶

a=1∶

,故④错误.

综上所述,正确的是①②③.

20.已知一次函数y=

x-15的图象与x轴,y轴分别交于点A,B,O为坐标原点,则在△OAB内部(包括边界),纵坐标、横坐标都是整数的点(整点)共有__106__个.导学号:

91354038

【解】 易得点A(12,0),B(0,-15).

设当x=n时,在△OAB内部且不在x轴上的整点个数为an.

易得a1=13,a2=12,a3=11,a4=10,a5=8,a6=7,a7=6,a8=5,a9=3,a10=2,a11=1.

在坐标轴上的点共有15+1+12=28(个).

∴整点共有13+12+11+10+8+7+6+5+3+2+1+28=106(个).

三、解答题(共50分)

21.(6分)

(1)解不等式组:

并把它的解在数轴上表示出来.

【解】 解第一个不等式,得x≤2.

解第二个不等式,得x>-1.

∴此不等式组的解为-1<x≤2.

在数轴上表示如解图①所示.

(第21题解①)

(2)解不等式组:

并把它的解在数轴上表示出来.

【解】 解第一个不等式,得x<4.

解第二个不等式,得x≥-1.

∴此不等式组的解为-1≤x<4.

在数轴上表示如解图②所示.

(第21题解②))

(第22题)

22.(6分)如图,已知在△ABC中,AB=AC,BC=6,AM平分∠BAC,D为AC的中点,E为BC延长线上的一点,且CE=

BC.

(1)求ME的长.

(2)求证:

△DMC是等腰三角形.

【解】 

(1)∵AB=AC,AM平分∠BAC,

∴BM=CM=

BC=CE=3,

∴ME=MC+CE=3+3=6.

(2)∵AB=AC,AM平分∠BAC,∴AM⊥BC.

∵D为AC的中点,∴DM=DC,

∴△DMC是等腰三角形.

23.(6分)如图,已知∠CDA=∠AEB=90°,且CD=AE,AD=BE.

(第23题)

(1)求证:

AC=BA.

(2)△ABC是什么三角形?

请说明理由.

(3)如果AM⊥BC,那么AM=

BC吗?

请说明理由.

【解】 

(1)在△ACD和△BAE中,

∵CD=AE,∠CDA=∠AEB=90°,AD=BE,

∴△ACD≌△BAE(SAS).∴AC=BA.

(2)△ABC是等腰直角三角形.理由如下:

(1)知△ACD≌△BAE,

∴AC=BA,∠CAD=∠ABE,

∴∠BAC=180°-∠CAD-∠BAE=180°-∠ABE-∠BAE=180°-90°=90°.

∴△ABC为等腰直角三角形.

(3)AM=

BC.理由如下:

∵△ABC为等腰直角三角形,且AM⊥BC,

∴BM=CM,∴AM=

BC.

24.(10分)某经销商从市场得知如下信息:

A品牌手表

B品牌手表

进价(元/块)

700

100

售价(元/块)

900

160

他计划用4万元资金一次性购进这两种品牌手表100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得的利润为y元.

(1)试写出y与x之间的函数表达式.

(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?

(3)选择哪种进货方案,该经销商获得的利润最大?

最大利润是多少元?

【解】 

(1)由题意,得y=(900-700)x+(160-100)(100-x)=140x+6000.

∵7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1