铝土矿和红柱石经热处理后的耐火性的比较.docx

上传人:b****9 文档编号:28612604 上传时间:2023-07-19 格式:DOCX 页数:19 大小:68.40KB
下载 相关 举报
铝土矿和红柱石经热处理后的耐火性的比较.docx_第1页
第1页 / 共19页
铝土矿和红柱石经热处理后的耐火性的比较.docx_第2页
第2页 / 共19页
铝土矿和红柱石经热处理后的耐火性的比较.docx_第3页
第3页 / 共19页
铝土矿和红柱石经热处理后的耐火性的比较.docx_第4页
第4页 / 共19页
铝土矿和红柱石经热处理后的耐火性的比较.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

铝土矿和红柱石经热处理后的耐火性的比较.docx

《铝土矿和红柱石经热处理后的耐火性的比较.docx》由会员分享,可在线阅读,更多相关《铝土矿和红柱石经热处理后的耐火性的比较.docx(19页珍藏版)》请在冰豆网上搜索。

铝土矿和红柱石经热处理后的耐火性的比较.docx

铝土矿和红柱石经热处理后的耐火性的比较

Effectofthermaltreatmentondamagemechanicalbehaviourofrefractorycastables:

Comparisonbetweenbauxiteandandalusiteaggregates

M.GhassemiKakroudia,b,E.Yeugo-Fogaingc,C.Gaultb,M.Hugerb,

andT.Chotardb,

aDepartmentofCeramicEngineering,UniversityofTabriz,Tabriz51666-16741,IslamicRepublicofIran

bGrouped’EtudedesMatériauxHétérogènes(GEMH),ENSCI,Limoges,France

cMatériauxàFinalitésSpécifiques,EA3834,InstitutdesSciencesdel’IngénieurdeToulonetduVar,Av.G.Pompidou,BP56,83162LaValetteduVarCedex,France

Received15January2008; 

revised20March2008; 

accepted28March2008. 

Availableonline6June2008.

Abstract

Duringservicelife,refractorycastablesaresubjectedtodifferentsolicitations.Theknowledgeoftheirdamagebehaviourundersuchsolicitationsishighlyneededforabetterunderstandingofmechanisms,whichinducethefinalruptureofstructuresmadewithrefractories.Sincethesematerialsareoftenusedaswallsofmetallurgicaltools,thermalgradientsinsuchstructurecanleadtoseveremechanicalstressesintheouterlayeroftherefractorypartwhichisataratherlowtemperature.

Thisstudydealswiththemechanicalpropertiesatroomtemperature(bytensiletest)oftworefractorycastablestreatedatdifferenttemperatures(110 °C,250 °C,500 °C,700 °C,900 °Cand1100 °C)inordertoreproducethethermalgradientinwallsofmetallurgicaltools.Tworefractorycastablesareconsidered:

anultra-lowcementcontentbauxite-basedmaterial(Bau-ULCC)andalowcementcontentandalusite-basedmaterial(And-LCC).

Keywords:

Tensiletest;Mechanicalproperties;Thermalexpansion;Refractories;Castables

ArticleOutline

1.Introduction

2.Materialsandexperimentalprocedures

2.1.Materialandsamplepreparation

2.2.Dilatometry

2.3.Ultrasonicmeasurements

2.4.Tensiletest

3.Resultsanddiscussion

3.1.Young'smodulusvaluesatroomtemperature

3.2.Microstructuralevolutionduringafirstthermalcycleupto1500 °C

3.3.Young'smodulusevolutionduringthermalcyclesatlowertemperatures

3.4.Mechanicalbehaviourintensionafterthermaltreatment

3.5.Sourceofdamageinthecastables

4.Conclusion

Acknowledgements

References

1.Introduction

Theuseofmonolithicrefractoriesinvariousindustries(metallurgical,cement,etc.)iscontinuouslyincreasingforthelast20years[1]and[2].Duringtheirservicelife,refractorycastablesaresubjectedtoseveresolicitations,especiallyfromathermomechanicalpointofviewandaredegradedbyacombinationofseveralmechanisms,mainlythermalshock,abrasion,corrosionandmechanicalimpact.Thebehaviourofthesematerialsfacetothosemechanismsisinfluencedbytheevolutionofmanyfactorssuchastheirchemicalcomposition,theirmicrostructureaswellastheirphasetransformation,whichoccurathightemperatureduringfiringprocess,and/orinservice[3]and[4].

Thephysicalpropertiesofarefractoryconcretearehighlytemperature-dependent.Thisisprimarilycausedbythecomplexhydrationanddehydrationreactionsofcalciumaluminatecement[5],[6]and[7].

Theelaborationofmonolithicscontainingcalciumaluminatecementscontainsseveralstepssuchasmixing,placingandconsolidation,curinganddryoutandfinallyuseinservice.Eachofthesestepswithinthecastableplacingchainareintimatelylinkedtotheinitialhydrationprocessofthecalciumaluminatecement(CAC)[8]and[9].

Therefractorycastablesgenerallypresentcomplexheterogeneousmicrostructureswhichcanprovidestronginternalstressesbythermalsource.Becauseofthemismatchbetweenthepropertiesofphasesandmainlybetweentheircoefficientsofthermalexpansion,theserviceconditionscanconsiderablyaffecttheirinitialmicrostructuralstateandthustheirthermomechanicalproperties[10]and[11].

Previousstudieshavealreadybeenperformedinthefieldofthehightemperaturebehaviourofrefractorycastables[3]and[12].Thispaperdealswithresultsofanexperimentalapproachdevelopedtocharacterisethemicrostructuralchangesanddamageprocesses,whichoccurinsuchmaterialsduringthefirstheating.

2.Materialsandexperimentalprocedures

2.1.Materialandsamplepreparation

Twocommercialcastablesareconsidered.Thefirstoneisalowcementandalusitecastable(And-LCC)madeofandalusiteaggregates,fumedsilica,aluminaandofacalciumaluminatecement.Thesecondisanultra-lowcementbauxitecastable(Bau-ULCC)madeofbauxiteaggregates,fumedsilica,aluminaandofthesamecement.Bothmaterialsarecharacterisedbythesamefumedsilicacontent.InBau-ULCC,thealuminacontentistwotimeshigherthaninAnd-LCC.Table1showsthechemicalcompositionsofthecastablessuppliedbythemanufacturer.Thehighdifferencebetweenthesilicacontentsofthetwomaterialsismainlyduetothehighsilicacontentinandalusiteaggregatescomparedtobauxiteones.Forbothcastables,themaximumaggregatesizeisabout5 mm.Thematerialswerecuredduring24 hat110 °C.Fig.1showspicturesofpolishedsectionsofcuredmaterials.Aftermachining,somesampleshavebeenfiredat250 °C,500 °C,700 °C,900 °Cand1100 °Cinordertosimulateseveralthermalhistoriesbeforecharacterisation.Thesetemperaturelevelshavebeenfixedaccordingtothetemperaturerangerepresentingtherefractorycastablesinspecificindustrialapplications.Firingthermalcyclesarecharacterisedby5 °C/minheatingandcoolingratesandbya5 hisothermaldwellatthemaximumfiringtemperature.

Table1.

Chemicalanalysisandcharacterisationsdataofthetworefractories

Castabletype

And-LCC

Bau-ULCC

Aggregatetype

Andalusite

Bauxite

Al2O3(wt.%)

58

85

SiO2(wt.%)

37.5

10

CaO(wt.%)

2.3

1.1

Fe2O3(wt.%)

0.9

1

Maximumaggregatesize(mm)

5

5

Waterrequirement(wt.%)

4.5–5.5

4.2–5.2

Openporosity(vol.%)

6

10

Apparentdensity(kg/m3)

2600

2970

Full-sizetable

ViewWithinArticle

 

Full-sizeimage(122K)

Fig.1. Microstructureofstudiedrefractories:

(a)And-LCC;(b)Bau-ULCC.

ViewWithinArticle

2.2.Dilatometry

Inordertostudythermalexpansionmismatcheffects,samplesofmatrixandofaggregateshavebeenprepared.Thesamplesofthematrixwerepreparedbycastingandthesamplesofaggregates(grainsizelessthan200 μm),wereshapedbypressing.Thethermalcycles(heating/cooling)werecarriedoutwithaslopeof5 °C/min.

Theinfluenceofthetemperatureonamaterialcauses,ingeneral,variationsofitsapparentvolume.Theknowledgeofthesevariationsmakesitpossibletocharacterisemanyphysicalphenomenawhichoccurwithinamaterialduringagivenheattreatment.DilatometrictestswerecarriedoutbyadilatometerADAMELDI.Thesamplesusuallyusedareofdimension10 mm × 5 mm × 5 mm.

2.3.Ultrasonicmeasurements

Anultrasonictechniquebasedonacontinuousinsitumeasurementofthevelocityoflongitudinallongbarmodewavesinthematerialhasbeenusedtomonitortheevolutionoftheelasticmodulusversustemperatureonbothmaterials[13]and[14].Fig.2isaschematicrepresentationoftheultrasonicdevice.Thedeterminationoftheultrasonicvelocityisbasedonthemeasurementoftheroundtriptimeτbetweentwosuccessiveechoesinthesample.Theultrasonicpulseistransmittedfromthetransducertothesamplethroughawave-guide.ThemeasurementofthetimeτbetweentwosuccessiveechoeswithinthesampleallowstocalculatethewavevelocityandthentoobtainthevalueoftheYoung'smodulusbyEus = ρ(2L/τ)2,whereLandρaresamplelengthanddensity,respectively.

 

Full-sizeimage(33K)

Fig.2. Experimentalset-upusedforYoung'smodulusmeasurementathightemperaturebylongbarmodeultrasonicpulsetechnique.

ViewWithinArticle

2.4.Tensiletest

TensiletestshavebeenperformedwithanINSTRON8862electro-mechanicaluniversaltestingmachineatroomtemperature.Fig.3presentsaschematicofthetensiletestdevice.Thestrainismeasuredbytwoextensometersequippedbysiliconcarbiderodswhichareplacedontwooppositefacesofthespecimen.Theextensometergaugelengthis25 mm.

 

Full-sizeimage(53K)

Fig.3. Schemeofthetensiletestdevice.

ViewWithinArticle

Thelowvaluesofthedisplacementatruptureexhibitedbythesematerials(3–5 μm)requiredagoodcontrolofthethermalstabilityoftheextensometers(±0.1 °C).Therefractorysamplesareconstitutedofacylindricalrod(18 mmindiameter)gluedtotwometallicparts.Thegeometryispreciselyadjustedthankstoafinalcylindricalmachiningstepofthetotalassembly.Thetensiletestsarecarriedoutuntilrupturewithaconstantdisplacementvelocityof0.04 mm/minwithintermediateunloadingatseverallevelofstress.ToaccuratelydeterminetheYoung'smodulusfromtensiletestresults(ET),theearlyslopeofthefirstloadingstepofthestress–straincurveshasbeenevaluated.Fig.4illustratesanexampleofstress–straincurveobtainedonAnd-LCCtreatedat110 °CandthemethodtodeterminetheYoung'smodulusattheveryfirsttime.

 

Full-sizeimage(45K)

Fig.4. Stress–straintensilecurvesofAnd-LCCatroomtemperatureaftertreatmentat110 °C.ZoomoftheinitialpartofthecurvesthatillustratestheearlydeterminationoftheYoung'smodulusET.

ViewWithinArticle

3.Resultsanddiscussion

3.1.Young'smodulusvaluesatroomtemperature

Foreachmethod,exceptfortheultrasonicone,atleastfivesamplesweretested.Table2presentstheresultsoftheYoung'smodulusmeasuredatroomtemperaturebythetwotechniques(ultrasonicmeasurementandtensiletest)onbothcastables.Theobtainedvaluesa

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 哲学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1